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Radiation Effects in the Lung
by John E. Coggle,* Barrie E. Lambert,* and
Steve R. Moorest

This article outlines the principles of radiobiology that can explain the time of onset, duration, and
severity of the complex reactions of the lung to ionizing radiation. These reactions have been assayed
biochemically, cell kinetically, physiologically, and pathologically. Clinical and experimental data are
used to describe the acute and late reactions of the lung to both external and internal radiation including
pneumonitis, fibrosis and carcinogenesis.
Acute radiation pneumonitis, which can be fatal, develops in both humans and animals within 6 months

of exposure to doses 3 8 Gy of low LET radiation. It is divisible into a latent period lasting up to 4 weeks;
an exudative phase (3-8 weeks) and with an acute pneumonitic phase between 2 and 6 months. The latter
is an inflammatory reaction with intra-alveolar and septal edema accompanied by epithelial and endothelial
desquamation. The critical role of type II pneumonocytes is discussed.
One favored hypothesis suggests that the primary response of the lung is an increase in microvascular

permeability. The plasma proteins overwhelm the lymphatic and other drainage mechanisms and this
elicits the secondary response of type II cell hyperplasia. This, in its turn, produces an excess of surfactant
that ultimately causes the fall in compliance, abnormal gas exchange values, and even respiratory failure.
The inflammatory early reaction may progress to chronic fibrosis. There is much evidence to suggest

that pneumonitis is an epithelial reaction and some evidence to suggest that this early damage may not
be predictive of late fibrosis. However, despite detailed work on collagen metabolism, the pathogenesis of
radiation fibrosis remains unknown.
The data on radiation-induced pulmonary cancer, both in man and experimental animals from both

external and internal irradiation following the inhalation of both soluble and insoluble alpha and beta
emitting radionuclides are reviewed. Emphasis is placed on the data showing that alpha emitters are at
least an order of magnitude more hazardous than beta/gamma radiation and on recent data showing that
the more homogeneous the irradiation of the lung, the greater is the carcinogenic hazard which contradicts
the so-called "hot particle" theory.

Introduction
The reaction of the lung to radiation is an involved

one, since it is a complex organ. Over 40 types of cell
make up the lung, and most ofthem would be considered
relatively radioresistant (1). However, since the lung
as a whole has little regenerative capacity, it cannot
tolerate large doses of radiation and its radiosensitivity
is the major limiting factor in radiotherapy of the chest
(2,3). The critical injuries that eventually lead to im-
paired ventilation and diffusion capacity are related to
the total dose, its fractionation, and to the volume of
the lung irradiated. It is well established that the ab-
sorption of ionizing radiation causes immediate bio-
chemical, subcellular, and cellular damage, while its
morphological expression in terms of gross tissue injury
and organ dysfunction are often considerably delayed.
The latent period between the exposure and the expres-
sion of damage is critically dependent on how efficiently
the normal cells can repopulate the tissue (4).
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Radiation damage to the lung can be described at all
levels of organization from the molecular through to the
organ level. The response of the lung has been assayed
biochemically (5-8), cell kinetically (9-11), histologically
(12-14), physiologically (15-17), and pathologically, us-
ing lung death as an endpoint (18,19).

In this review we shall first outline some of the gen-
eral principles of radiobiology that can explain time of
onset of appearance and the extent and the severity of
radiation responses in organized tissues. Then we shall
draw upon both human and experimental animal data
to describe the significant early and late reactions of
the lung to external and internal radiation, including
pneumonitis, fibrosis, and carcinogenesis.

General Aspects of Radiation
Effects in Organized Tissues
The response of mammalian tissues to radiation is the

integral of cell death and damage together with its re-
pair capacity.
The extent of the damage suffered by a tissue such

as the lung is a complex function of physical and bio-
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logical factors. The physical factors include the size of
the radiation dose, its quality and whether the exposure
is single, fractionated or protracted. The biological fac-
tors include the radiosensitivity of the different cells of
the tissue, their population kinetics, their state of oxy-

genation, the differential sensitivity of the phases of the
mitotic cycle and, perhaps most important, the presence
or absence of repair and repopulation processes.
The ability of ionizing radiation to cause the mitotic

death of cells is fundamental to an understanding of
tissue radiobiology (20). It has been known since 1906
that the radiosensitivity of a tissue is directly related
to its mitotic activity and inversely proportional to the
degree of differentiation of its cells (21). Consequently,
the liver, kidney, muscle, bone, lung, and connective
tissues are often classified as radioresistant, while the
rapidly proliferating cells ofthe bone marrow, the germ-
inal cells of the testis, and the epithelial cells of the skin,
intestine, and stomach are all classified as radiosensitive
(22,23).
At very high doses (tens of Gray*), radiation can

cause the cessation of metabolism and cellular disinte-
gration-a type of death known as interphase death.
However, much lower doses (2-3 Gy) will sterilize two-
thirds of a population of cells by inhibiting their ability
to divide (24). Some of the irradiated cells will degen-
erate and die at the first post-irradiation mitosis, while
others may successfully undergo one or two divisions
before dying at the third or fourth post-irradiation mi-
tosis. There is evidence to link such reproductive death
with DNA (25). It is a fundamental tenet of radiobiology
that the response of a tissue is contingent upon the level
of cell killing.
The graphical presentation ofthe fraction of surviving

cells plotted logarithmically against the radiation dose
plotted linearly is known as a survival curve. The ex-

ponential slope of such a survival curve is described by
a value known as Do, which is the dose to reduce the
surviving fraction of cells to 37% of any initial value.
Survival curves have been produced in vitro and in vivo
for numerous cell lines, and Do values for acute doses
of low LET radiation (X-rays, gamma-rays and elec-
trons) are generally between 1 and 3 Gy. t For high LET
radiation (alpha particles and neutrons) Do values tend
to be somewhat smaller. After low doses (1-2 Gy) of
low LET radiation there is a finite chance that some

cells will be killed but most suffer what is called "sub-
lethal" damage (SLD), and in radiotherapy the use of
fractionated dose regimes is designed to allow the nor-

mal tissues in the therapy beam time to repair at least
some of this sublethal damage in the intervals between
successive dose fractions. It will be obvious that a series
of smaller doses is even less effective than larger frac-
tions, and continuous, low dose rate, chronic radiation,

*Grays are the unit of absorbed dose: the amount of enery imparted
to unit mass of matter, such as tissue. 1 gray (Gy) = 1 joule per
kilogram.

tLinear Energy Transfer (LET) is a measure of the density of
ionization events along the track of the radiation in a medium such
as tissue.

which can be regarded as ultrafractionation, is the least
effective way of damaging a tissue. As the dose rate
gets lower and lower, the survival curves get less steep
until the rate of repair balances the rate of SLD induc-
tion and for many systems with low LET radiation this
limiting slope occurs at about 0.1 Gy/hr.

Besides these important time-dose factors associated
with SLD repair there are many other factors that can
modulate the effectiveness of a given radiation expo-
sure. These include the repopulation kinetics of surviv-
ing cells, the repair of potentially lethal damage, and
various slow repair processes (26-31).
The most important of the factors determining the

extent of injury in a tissue is its ability to repopulate
after radiation damage (4,31). This repopulation must
involve both the dividing stem cells and the nondividing
functionally mature cells. The former will begin to die
when they attempt their first or second post-irradiation
divisions. While the nondividing differentiated cells, rel-
atively unaffected by radiation, will continue to function
and to die at their normal rate, they will not be so
efficiently replaced because of the damage to the stem
cell compartment. This time course of the repair is
closely related to the efficiency of the population kinet-
ics. Injury will not become apparent until the number
of functional cells falls below a critical level. The extent
of the damage in a tissue will of course be related to
dose, which will determine the severity and duration of
the cellular depletion. In contrast, the time of onset of
damage is less dependent on the size of the dose and
more dependent on the cell kinetics of the tissue. For
example, in rapidly dividing tissues, e.g., the skin, gas-
trointestinal mucosa, and testis, cell death and cell de-
pletion will occur earlier than in slowly dividing tissues
such as kidney and lung (32). In the latter the damage
may be delayed for months, although the onset of dam-
age, when it occurs, may be quite acute; these so-called
"delayed acute reactions" have been seen in the kidneys
and lungs. For protracted irradiation the dose rate at
which the rate of cell production balances the rate of
cell death varies enormously from tissue to tissue (33).
In the testis, deleterious effects are detectable at dose
rates as low as 0.01 Gy per day (34,35), while 0.5 Gy
and 4 Gy per day, respectively, are reported as the
critical daily dose rates for the erythropoietic system
of rodents and for the rat intestine (36). In the lung and
other slowly proliferating systems there are virtually
no data on the effects of low-level chronic irradiation.

Radiation causes acute effects (within days or weeks)
in rapidly proliferating tissues and delayed effects
(months or years) in slowly or nonproliferating tissues.
There is general agreement that acute effects are pri-
marily due to a disturbance of cell kinetics. In contrast,
there is much debate about the pathogenesis of the late
effects seen in slowly dividing tissues. One school of
thought suggests that late effects, excluding cancer in-
duction, are due primarily to vascular damage (37). It
is held that damage to small vessels eventually leads to
a degeneration of cells of a tissue and to the generalized
late fibrosis of its connective tissues. The other school
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of thought suggests that the wide diversity of late dam-
age seen in different tissues is best explained in terms
of the slowly proliferating parenchyma of such tissues
(32). This hypothesis suggests that, just as acute effects
occur early in rapidly dividing tissues, so the late effects
occur late in slowly dividing tissues because the expres-
sion of the damage at mitosis has to await the gradual
appearance of such divisions. Of course, late effects may
be due to a combination of changes in the connective
tissues, the parenchyma, and the vascular elements.

In comparison with many tissues, e.g., the skin, bone
marrow, and gastrointestinal tract, our knowledge of
the radiobiology of the lung is rudimentary. However,
many of the precepts just described form a useful frame-
work within which to view what is known of the radio-
sensitivity and radioresponsiveness of the lung.

Acute Effects of Radiation in the
Lung
Introduction
The significant acute and late reactions of the lung to

radiation have been described in some excellent reviews
(3,14,38-40). The lung's response, both clinically and in
experimental animals, is similar and can be divided into
two syndromes that are not necessarily related. They
are (a) radiation pneumonitis, which develops within 6
months after exposure to doses : 8 Gy ofX - or gamma-
rays and (b) radiation fibrosis, which is a delayed or
late reaction that develops from about 6 months to years
after exposure.

Radiation pneumonitis itself can be divided into a
number of phases, which although they merge and over-
lap one another are nevertheless distinct. These are:
(i) a latent period, which lasts up to 4 weeks after mod-
erate doses (-10-15 Gy) and is characterized by the
virtual absence of gross histological damage. (ii) An ex-
udative period, 3-8 weeks post-irradiation, which is
characterized by protein-rich deposits in the air spaces,
with increasing epithelial and endothelial cell damage.
At low doses (8-10 Gy) this phase may be nonexistent.
(iii) Acute pneumonitis, which occurs 2-6 months after
exposure, involves edema of the air spaces and the al-
veolar septa. Desquamative changes occur in epithelial
and endothelial cells, with increasing numbers of mono-
nuclear, inflammatory cells in the septa and air spaces.
(iv) The late or chronic phase occurs from 6-12 months
onwards and involves repair proliferation of septal and
alveolar cells that leads to subtle reconstructional
changes in septal, vascular, and connective tissue ele-
ments. This finally merges into the progressive consoli-
dative increase in interstitial fibrosis and capillary scle-
rosis that characterizes late radiation fibrosis.

Radiation pneumonitis is generally regarded as an
inflammatory reaction that progresses to a chronic fi-
brotic reaction. Deaths can occur in both the acute and
the late phase.
There is not yet a generally accepted theory on the

pathogenesis of radiation pneumonitis, although there

are several hypotheses as to what may be the primary
lesion. It has often been suggested that the damage is
principally vascular with a sloughing of dead and dying
endothelial cells, causing capillary leakage both inter-
stitially and onto the alveolar surface (2,8,12,41,42).
Other work highlights damage to type II cells (14), with
the death and dysfunction of such epithelial cells causing
serious alteration in the levels of surfactant phospho-
lipids (6,43,44). Yet other work suggests the primary
damage is the necrosis and sloughing of type I cells,
which leaves denuded basement membranes and alveo-
lar debris (12,39,45). It is further suggested that it is
the subsequent hyperplasia and differentiation of type
II cells that repair the alveolar epithelial layer and it is
the efficiency of such repair that determines the extent
of the final injury (39). Finally, there are minor refer-
ences implicating a critical role for the lymphocytes (46),
the immune system (47), and microbial infection (13,48).

In the following paragraphs we shall enlarge on some
ofthese ideas but it must be said that our present knowl-
edge is insufficient to allow a definite choice to be made
between these hypotheses.

The Latent Period of Pneumonitis
In this phase, at about one month post-irradiation,

the lungs do not exhibit the typical inflammatory re-
actions of acute pneumonitis. There is no evidence from
light microscopy of damage at less than 3 weeks after
10-20 Gy of X-irradiation. Nevertheless there are in-
creasing numbers of studies highlighting important bio-
chemical, ultrastructural, and cellular changes that pre-
cede the gross histological and physiological evidence
of pneumonitis. Such early changes may provide useful
clues to the later events in radiation pneumonitis.

Maisin (12,49) was one of the first to use electron
microscopy to detail the very early post-irradiation ef-
fects. After a dose of 20 Gy to the rat lung, he observed
focal lesions involving ultrastructural changes in cell
types, within 3 hr of irradiation. The changes included
disruption of plasma membranes, with widening and
invagination of the perinuclear space. Capillary perme-
ability was increased, probably due to membrane
changes in the endothelial cells. These changes contin-
ued, and by 6 hr, cellular ultrastructure was markedly
altered: mitochondria in all cell types were affected with
dilation of the matrix, disruption of the cristae, and the
presence of myelin-like fibers. The lamellar bodies of
type II cells were enlarged and irregular-although not
increased in number-and both type I and type II cells
had developed autophagic vacuoles. Hypertrophy and
vacuolation of the cytoplasm of endothelial cells caused
obstruction and swelling of the capillaries which per-
sisted through the first week after irradiation.
Most of these effects have been confirmed by other

authors, although there is still a dearth of such data and
no consensus as to the exact pattern of cause and effect
of the pathogenesis of these early effects. Phillips (2,18)
reported that the earliest damage in the rat lung was
to the microvasculature, with endothelial injury prom-
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inent 24 hr after 20 Gy. All the damage was ascribed
to the capillaries, and the authors stated that there was
"no alteration in the epithelium or basement membrane"
(18). Adamson and his colleagues (45) described similar
endothelial changes in rat lung within 2 days of 11 Gy
and 5 days of 6.5 Gy, with the degeneration of the en-
dothelium leading to distension and blockage of the cap-
illary lumen. Finally, in the dog following one-lung ir-
radiation with X-rays, it has been reported that the
initial site of damage was to the capillaries and their
endothelium (50). As early as 14 days after irradiation,
there was luminar dilation and congestion, with in-
creased permeability causing interstitial edema. The
changes were minimal in the 2-8 Gy group, but most
significant within the highest dose one (24-32 Gy).

In contrast, "no widespread endothelial injury" was
found in an ultrastructural study of the effect of single
and fractionated doses of 10, 20, and 30 Gy X-rays,
either as single doses or equal fractionated exposures
for 5 consecutive days at times from 1 hr to 1 month
(51). In addition, pinocytic activity was essentially un-
altered by the radiation. They noted an increase in the
microvilli projecting into the capillary lumen, and they
support the observations of Maisin (12) that such pro-
jections might impede capillary flow and encourage
thrombocytosis. However, they stressed that at the ul-
trastructural level the primary and most marked
changes involved the type I and type II pneumocytes,
with an associated increased edema, fibrin deposition,
and histocyte invasion occurring within 24 hr. There
was a marked decrease in the number of lamellated
bodies in type II cells at 24 hr with type II hyperplasia
and an increase in such bodies 7 days later. The vacu-
olation, mitochondrial swelling, loss of internal mem-
branes, and distortion of the endoplasmic reticulum of
type II cells and their sloughing into the alveolar lumina
occurred 3-4 weeks post-irradiation. Curiously, both
type II autolysis and other cellular damage was more
marked in the lungs treated with the fractionated doses.
Occasionally, type I cells showed signs of progressive
degeneration with a loss of organelle integrity as early
as 24 hr. Although the alveolar wall was edematous and
had areas of thickened basement membrane, no areas
of denuded membranes were observed.

In contrast, Adamson and co-workers (45) described
focal swelling, necrosis, and sloughing of type I cells to
leave a denuded basement membrane. The effect was
maximal at 10 days after 11 Gy whole body, 14 days
after 6.5 Gy whole body or 30 Gy to the hemithroax.
There was, however, no damage to the type II cells
"nor was there proliferation of type II cells such as
occurs after exposure to oxygen and nitrogen dioxide."
Goldenberg et al. (52) found early changes in type II

cells in rats, but no effect on type I or endothelial cells,
while in hamsters given a high dose of 100 Gy of X-rays
to the lungs, Madrazo et al. (47) showed progressive
ultrastructural changes in all alveolar cell types in the
hamster lung within 14 days. The regenerative hyper-
plastic response of the type II cells was reported to be

very efficient and no denudation of the basement mem-
branes was seen.

Early ultrastructural changes in experimental ani-
mals have been reported after high doses of internal
alpha and beta emitters (53). It is clear that there are
reports in the literature of ultrastructural focal lesions
occurring in most species within a few days in all types
of epithelial and endothelial cells, interstitial cells,
plasma and basement membranes and even in the al-
veolar macrophages (12,54). It is also clear that there
is little agreement in the literature as to which lesions
are the most crucial in this early latent period. There
is a need for further ultrastructural studies to clarify
the early sequence of events. However, if such studies
are to be of value in predicting the possible mechanisms
of acute pneumonitis, they should be combined with
biochemical and functional studies. They should also in-
volve a wider range of doses than has usually been the
practice in electron microscopy studies.

The Exudative Phase of Pneumonitis
One ofthe earliest, although not the most consistently

reported response both clinically and experimentally, is
the appearance of fibrin-rich serum proteins on the al-
veolar surfaces (14). It is usually seen during the first
30 days following radiotherapy and in some patients is
associated with hyaline membrane formation (3,40).
Hyaline membranes are rarely reported in experimental
animals (18,19,51,55). Ahier et al. (56) reported a con-
sistent dose-dependent increase in serum protein levels
in alveolar lavage fluid in mice given thoracic X-ray
doses. At - 10 Gy this proteinosis was transient, peaked
at -4 weeks and was resolved by 6 weeks post-expo-
sure. After -15 Gy there was a three- to fourfold in-
crease in protein levels by 4 weeks and this persisted
into the phase of pneumonitis, some 4 months post-
irradiation. By this time the protein levels in lavage
fluid could be as high as twenty times those of the con-
trols.
Such hematogeneous leakage easily and rapidly in-

terferes with lung function by reducing the volume of
the air space and by increasing the barrier to gaseous
diffusion. In rats, following inhalation of 238PuO2 and
239PuO2 severe edema and alveolar flooding with pro-
teinaceous fluids occurred within 6-7 days of exposure
(56).

In contrast, Gross (8) in mice, given 30 Gy as two
fractions separated by 48 hr, found no increase in the
protein levels in alveolar lavage fluids up to 8 weeks
post-treatment, but at 16 weeks the amount was 4-5
times normal. Gross emphasizes this "period of 3-5
months before the endothelium and epithelium becomes
leaky." Nevertheless, the clinical and experimental re-
ports of early proteinosis are consistent with the early
ultrastructural changes in the fine vasculature and the
alveolar epithelium and with the early variations in cap-
illary permeability and perfusion that have been re-
ported. For example, Teates (58) reported a transiently
increased, pulmonary diffusion capacity for carbon mon-

264



RADIATION EFFECTS IN THE LUNG

oxide in rats within 1 week of 30 Gy of X-rays, which
would indicate increased capillary perfusion. Freedman
et al. (59) observed increased pulmonary capillary per-
fusion in rabbits during the first week after single doses
of 15-30 Gy of X-rays to the right lung. There are two
reports of transitory reductions in perfusion occurring
within 1-2 hr of doses between 30-60 Gy of X-rays in
rabbits and in both studies the perfusion returned to
normal within 24 hr (59,60). Travis and co-workers (61)
found an increase in rats, 2, 4, and 8 weeks after 5, 20,
and 40 Gy of X-rays, and they state that such effects
preceded any histological evidence of lesions. Hender-
son et al. (62) showed that in dogs that had inhaled beta-
emitting isotopes-yttrium- and cerium-labeled insol-
uble particles-an increased leakage of protein into the
alveolar space occurred less than 1 month after accu-
mulated doses of 60-100 Gy beta irradiation. Studies in
man also show that a reduction in perfusion precedes
the signs and symptoms of pneumonitis and occurs as
early as 3-4 weeks after thoracic irradiation (17,63-65).
The evidence for early changes in the permeability of

the interstitium seems equivocal. The major changes in
the vascular and mechanical properties of the lung occur
in the main period of morbidity and mortality, 3-6
months post-irradiation.

Acute Radiation Pneumonitis
Introduction
The main histological lesions that characterize the

acute phase of pneumonitis in both humans and exper-
imental animals are inflammation and edema of the in-
terstitium and air spaces. Excess numbers of mono-
nuclear inflammatory cells, including foamy
macrophages, infiltrate the area. The air spaces usually
contain excess protein and fibrin-rich exudates. Besides
these most obvious responses, there are reports of le-
sions in virtually all lung structures (39). As Gross (39)
remarks, "there are no specific lesions that entirely
characterise radiation pneumonitis." Table 1 lists the
principal histopathological abnormalities of pneumoni-
tis. Not only are these responses seen in animals re-
ceiving external X- and gamma-radiation, but the same
sequence and timing of cell and tissue lesions have been
described in rats, mice, hamsters, dogs, and rabbits
whose lungs have been irradiated by instillation or in-
halation of alpha- and beta-emitting radionclides (66-
69) and reviewed in ICRP 31 (53). Clinical data are less
systematic, but it is well established that acute doses
: 7-8 Gy X-irradiation produce similar widespread
damage in all elements of the human lung (38). Despite
much work, the pathogenesis of pneumonitis is still
poorly understood. Damage to the capillary endothelial
cells has been cited as the major target (2,70,71), while
there is increasing support for the primacy of type II
cell damage as the cause of acute radiation pneumonitis
(6,14,38,39,51,72). There is also recent evidence sug-
gesting a dissociation between the two distinct types of
lung damage-pneumonitis occurring at 3-6 months
and fibrosis at - 6 months after radiation (73,74).

Post-Irradiation Cell Kinetics in the Lung
Radiation preferentially kills proliferating cells, and

so the expression and appearance of damage in the lung
will be a function of the turnover rate of the cells that
comprise the lung. However, in comparison with the
skin, gut, testis, bone marrow, and many other tissues,
very little attention has been paid to the post-irradiation
cell kinetics of the lung. There are obvious reasons that
militate against good cell kinetics in the lung. First,
there is the inherent difficulty of cell recognition under
light microscopy and autoradiography. Secondly, the
low cell density and low turnover rate of lung cells ne-
cessitate scoring many sections for statistically signifi-
cant numbers of DNA-labeled cells. Finally, among the
40 or so cell types, there is no dominant one that might
allow one to use any overall parameter as representative
of the kinetics of the lung as a whole.

Despite these limitations, some data exist on the two
cell populations that show the most active proliferation:
type II cells and alveolar macrophages. These cells are
also likely to be the most radioresponsive.
Type II Pneumonocytes. The response of type II

cells is of great interest not only because they play a
role in pneumonitis but as they are also likely target
cells for radiation-induced adenomas in rodents (10,75).
Furthermore, they are the source of surfactant and act
as the stem cell population for type I cells (76-78), which
rarely if ever divide (79-82). Despite the importance of
these cells, only one or two studies of post-irradiation
response have been published. For example, the DNA
labeling index of type II epithelial cells of mice given
thoracic X-ray doses of 2, 5, and 10 Gy showed an initial
7-day depression followed by a compensatory over-
shoot, so that at 3 months post-irradiation the labeling
index (LI) was five times the control mice (83). The large
errors inherent in a system with a LI as low as that of
type II cells (-0.4%) have been noted by others. Coultas
and co-workers (9) showed that the proliferative re-
sponse in type II cells of mice, after either 7.7 Gy neu-
trons or 10 Gy of X-rays, was identical; that is, reduced
for the first 6 days and then gradually rising above
controls, 3 to 5 weeks post-irradiation. It could not
therefore be the explanation for the difference in re-
sponse to the two radiations i.e., "slow repair" after X-
rays but not after neutrons. Furthermore, the repo-
pulation of type II cells only occurred at a time when
the slow repair was essentially complete.
These two studies highlight the important point that

radiation produces quantitatively and qualitatively, dif-
ferent lung cell kinetics from most other toxic agents.
For example, ozone (79), nitrogen dioxide (78), bleo-
mycin (77) and urethane (84) all produce immediate and
severe damage to type I and type II cells with concom-
itant prompt repair, involving striking increases in type
II cell proliferation. In contrast, the radiation response
is decidedly low key and chronic, which presumably
reflects the low turnover rate and consequently delayed
genetic cell death of the alveolar epithelial cells. To
circumvent the disadvantages of slow turnover, Meyer
et al. (10,75) have developed a method to assess the
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Table 1. Histopathological changes in the lung after radiation.a

Site
Capillaries

Type I cells

Type II cells

Basement membrane
Interstitial space

Alveolar space

Immediate and early (0-2
months)

2 hr: Endothelial changes
leading to increased
permeability

2 day: Endothelial separation
from basement membrane.

Sloughing of cells giving
obstruction of capillary lumen

Degenerative changes and
sloughing or Normal

Decreased numbers
Early degenerative changes
becoming more marked with
time or Normal

Swollen, becoming irregular
Edema and debris.
Increase in number of
inflammatory cells

Slight increase in coarse
connective tissue

Hemorrhagic
Filled with fibrin and cell debris
Increase in number of alveolar
macrophages

aModified from Gross (38), with permission.

Intermediate (2-9 months)
Abnormalities
Widespread obstruction due to

platelets, collagen and fibrin
Reduced capillary permeability

Further decrease
Large increase in size and
number

Abnormal appearance
Folded and thickened
Infiltration of mononuclear, mast
and inflammatory cells

Increase in connective tissue

Alveolar space becomes smaller

Late (9 months +)
Loss of many capillaries
Regeneration of new capillaries
Reduced permeability

Return to normal size and
number

Folded and thickened
Few inflammatory cells
Large increase in collagen

Alveolar space small or absent
Architecture destroyed

post-irradiation proliferative response of type II cells
after stimulating their division with the antioxidant,
butylated hydroxytoluene (BHT), which selectively kills
type I cells. The Do values for the proliferating fraction
(PF) of type II cells were 1.2 Gy and 0.6 Gy for X-rays
and fission neutrons, respectively. These values were
obtained when the BHT stimulus was given immedi-
ately after radiation and measured by the inhibition of
uptake of labeled DNA precursors. The Do (PF) for X-
rays increased from 1.2 Gy to 3.6 Gy at day 2 and to
5.8 Gy at day 14 after BHT. After neutrons, on the
other hand, the Do (PF) was 0.6 Gy at both day 0 and
day 2 after BHT stimulation, but increased to 3.45 Gy
at day 14. The evidence from split dose studies shows
that type II cells are capable of both short-term (1-2
days) and longer term (several weeks) recovery, which
might be the cellular basis of the phenomenon of slow
repair (85).
Alveolar Macrophages. Radiation biologists also

have a particular interest in the post-irradiation kinetics
of alveolar macrophages (AM) because they play a major
role in the clearance of radioactive particles and thus
modulate the final dose to the lung tissue. Much of the
early work dealt with the immunological role of AMs
and is of limited value because it involved single doses
and single assay times (86-89). These and other studies
on the effects of external X-, gamma-, or neutron-
irradiation on AM function have resulted in conflicting
observations. Thus, suppression of AM function by ra-
diation has been reported (90,91) as has their resistance
to radiation (92-95).

In a recent study, the rate of pulmonary clearance of
inhaled Staphylococcus aureus in mice was determined
at intervals after inhalation exposure to either the short-

lived beta-emitter, 144CeO2 or the long-lived alpha-em-
itter, 239PuO2 (96). Both radionuclides are relatively in-
soluble and both produced a reduction in clearance of
the bacteria. For example, 4.7 ,uCi of 1"Ce suppressed
clearance for up to 12 weeks post-inhalation, while 29
nCi of 239Pu suppressed clearance for up to 26 weeks.
The suppressed clearance did not correlate with the
radiation-induced histopathological changes, but did
correlate with the dose rate to the lungs at the time of
bacterial exposure. The study did not quantitate the
response of AM, but the authors suggest that "direct
radiation injury to the AM population is the likely cause
of reduced pulmonary clearance." This suggestion re-
ceives substantial support from three independent stud-
ies using endobronchial lavage to measure the fall and
subsequent recovery of AM numbers after a range of
doses from both external X-irradiation (11,97) and in-
ternal alpha-emitters (98).

Figure 1 shows a typical pattern of response in X-
irradiated mice. The absolute number of AM recovered
by lavage from controls in this experiment was _106
per mouse, which is some 40% of the total AM pool.

Figure 2 taken from the data of Moores and co-work-
ers (98) shows the changes in total number of AM in
the mouse lung after inhalation of 239PuO2. The alpha-
emitting particles produced both an acute depression in
AM numbers and, at high lung burdens, a sustained
chronic depletion.
The depletion in all these studies was dose dependent

and sensitive to fractionation (38), consistent with a
radiosensitive, proliferating pool of intrapulmonary
macrophage or macrophage precursor cells. Recent cell
kinetic studies, some using radiation, lends support to
this idea of subpopulations of pulmonary macrophages
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FIGURE 1. Relative number of alveolar macrophages recovered by
bronchoalveolar lavage from mice after thoracic X-irradiation:
()2 Gy; (E) 5 Gy; (U) 10 Gy. (11).
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FIGURE 2. Total number of alveolar macrophages in the lungs of
mice, after inhalation of "9PuO2, alpha-emitting particles. (98).

that have proliferative capacity (99-102). It is probable
that these dividing macrophages are radiosensitive. The
survival curves for both mouse and hamster alveolar
macrophage colony forming cells are reported to be
characterized by a Do of about 2 Gy for "'CS gamma-
rays (103).

It has been suggested that macrophages play only a
minor role in radiation pneumonitis because the per-
turbations in the AM population precede pneumonitis
by several weeks and pulmonary defense mechanisms
in general seem to have little to do with pneumonitis
(39). On the other hand, AM are seen in excess numbers
often as "foamy cells" filling alveolar spaces during acute
pneumonitis and before dismissing them one really
needs systematic and long-term data on the effects of
radiation on the AM population size at 3-9 months post-
irradiation.
The importance that several authors attach to the role

of vascular lesions in the development of acute pulmo-
nary damage has been noted and we shall enlarge on
this later in relation to the delayed effects. It is sug-
gested that the primary lesion is endothelial cell death
that occurs when the radiation sterilized cells go into
mitosis. However, since the turnover time ofendothelial

2ells is long-months to years (37)-significant vas-
Mular damage will occur very late after radiation. There
seems to be no significant published data on the normal
or post-irradiation kinetics of endothelial cells in the
lung.

Experimental Pulmonary Lethality
The most common endpoint used to measure the death

of animals from pneumonitis is the LD50/18,which is the
dose required to kill 50% of animals between 80 and 180
days after treatment (18). This LD50/180 value varies
with species and strain but is generally between 10 and
14 Gy for single acute doses of X-rays.

It can be argued that type II cells, macrophages and
endothelial cells are all functionally similar in different
strains and species, the inference being that variations
in LD50/180 values for pneumonitis cannot be due to ef-
fects on these cells. However, the more powerful
counter argument would be that while it is probably
true that the cell types mentioned are indeed structur-
ally and functionally identical, there are likely to be
subtle though important species/strain variations in the
radiosensitivity and in the post-irradiation cell kinetics
that could easily account for the relatively small vari-
ations in LD50/180 doses. This argument receives strong
support by analogy with radiation induced hemopoietic
death where strain/species variations can be quite ac-
curately correlated with the critical pluripotent stem
cell compartment, its size, radiosensitivity and post-
irradiation recovery kinetics.
Figure 3 shows typical survival curves for the per-

centage of mice surviving to 180 days after thoracic
irradiation with single doses, or two equal doses sepa-
rated by 24 hr, of 250 kVp X-rays or fast neutrons (71).
It shows the reduced effectiveness of fractionation and
taken together with data in Figure 4, shows that there
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FIGURE 3. Percentage ofmice surviving at 180 days after irradiation
of the thorax with single doses or two equal doses of 250 kVp X-
rays or fast neutrons, separated by 24 hr: (v) single neutron doses:
(A) two fractions neutrons; (U) single X-ray doses; (0) two frac-
tions X-rays. From S. B. Field and S. Hornsey (71), courtesy of
the authors and Pergamon Press.
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FIGURE 4. (Upper panel) the increase in LD50 for lung damage as
a function of the time interval between two fractions of X-rays:
(0) single dose; (@, A) data from two experiments; (lower panel)
the LD50 increase for two fractions of neutrons: (0) single dose;
(, A) data from two experiments. From S. B. Field (103), cour-
tesy of the author and Pergamon Press.

is an increase in the LD50/180 for lung death with in-
creasing time intervals between fractions (104). The
most dramatic changes occur over the first few hours,
especially for X-ray doses. This has been tentatively
attributed to the repair of sublethal damage in surviving
cells. For time intervals greater than 6 hr between X-
ray doses, the LD50/180 is increased by some 0.08 Gy
per day up to 28 days and this is attributed to a "slow
repair" process (Fig. 4, upper panel). For fractionated
neutron doses (Fig. 4, lower panel) there is no evidence
of the "slow repair" component, and there is a much
reduced rapid recovery phase.
The RBE for a single dose of neutrons, for the LD50,

180 endpoint, is 1.5, i.e., 7.8 Gy neutrons produces the
same effect as 11.6 Gy of X-rays.* The additional dose
required in two fractions to produce the same level of
damage as a single dose-the D2-D1 at 24 hr-was 4
Gy for X-rays and 2 Gy for neutrons.

Inhalation of large doses of alpha- and beta-emitting
radionuclides causes death in experimental animals

*RBE is the biological efficiency ofthe radiation under investigation
compared with that of therapy X-rays, under the same experimental
conditions.

from both pneumonitis and fibrosis (105,106). Studies
in beagle dogs have involved such beta-emitters as 90Y,
91y'14Ce, and 90Sr attached to fused aluminosilicate
particles (FAP) to look into the effects of dose rate on
the time and mode of pulmonary death (107). The more
protracted the exposure the longer was the survival
time of the exposed animals. For example, brief expo-
sure to 90Y caused death between 30 and 200 days with
50% mortality occurring after a cumulative dose of - 100
Gy. Whereas more protracted exposure to 90Sr deaths
occurred between 180 and 450 days after cumulative
doses of -560 Gy. Similar data have been obtained for
acute death from pneumonitis and fibrosis in dogs after
inhalation of the long-lived alpha-emitters ?38PuO2 and
239PuO2. The doses for 50% mortality were 80 and 210
Gy, respectively (106).
Using the LD50/180 system, compelling evidence has

been reported for the primary role of type II cells and
against the role for endothelial damage as the cause of
death from radiation pneumonitis (72). The studies in-
volved irradiation of mice either 2 or 6 days after treat-
ment with butylated hydroxytoluene (BHT). At 2 days
after BHT the proliferation of type II cells was at its
peak and at 6 days endothelial cell proliferation was
predominant. The LD50/180 for X-rays alone was 9.6 Gy,
which was reduced to 2.7 Gy when 2 days elapsed after
BHT treatment and was increased to 14.5 Gy for mice
irradiated 6 days after BHT. Similarly for fission neu-
trons alone the LD50/180 was 4.8 Gy, and 2 and 6 days
after BHT was 1.0 and 5.8 Gy respectively. Further-
more, there was a dramatic reduction in the time of
death of mice irradiated 2 days after BHT: mice re-
ceiving only X-rays died between 140 and 180 days,
whereas mice X-irradiated 2 days after BHT died of the
same lung lesions at 18-40 days post-treatment. A sim-
ilar shift in time of death patterns was observed for
neutrons. The apparent increase in the LD50/180 doses
in the mice irradiated 6 days after BHT can also be
explained by type II hyperplasia, i.e., there was an
increase in the number of target cells, which accom-
panied the BHT treatment (72).

Finally, there is evidence to suggest a dissociation of
early (pneumonitis) and late (fibrosis) damage in the
lung.
These findings raise the question to what extent pneu-

monitis and fibrosis are distinct types of injury possibly
with different target cells. The critical role of type II
cells in acute pneumonitis has been discussed. It may
be that pneumonitis and chronic fibrosis should not be
viewed, as is often the case, as a continuum. Early
damage may not therefore be predictive of late damage
especially if the mechanism of the former involves type
II cells and the latter involves endothelial damage and
the late impairment of vascular function during late-
fibrosis.

Clinical Pulmonary Lethality
The relevance of the animal lethality studies just de-

scribed lies in the need for a clearer understanding of
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pulmonary toxicity after both simple radiotherapy and
combined modality therapy. The severity of the injury
to the lung, which impairs ventilatory and diffusion ca-
pacity, is related to the volume of tissue irradiated and
to the tissue irradiated and to the fractionation and to
the total dose.
The time course of the histological and functional

changes in man and experimental animals is similar,
although the single X-ray dose required for severe ef-
fects in the mouse (-10-12 Gy) is about 40% greater
than that in man (-8 Gy). In patients, acute pneumo-
nitis usually occurs 3-4 months after irradiation with
the rapid onset of such symptoms as a nonproductive
hacking cough, spiking fever, shortness of breath and
even respiratory distress. Such symptoms occur in some
10% of patients receiving standard fractionated therapy
regimes that involve one-third to one-half of one lung
receiving a total dose of -40 Gy over 4-6 weeks. A
table of the predicted risk of pneumonitis as a function
of the total dose and the number of fractions has been
published (40). The increasing practice of upper half-
body irradiation is an excellent palliative in cases of
disseminated malignant disease, but carries a much
higher risk of pulmonary complications because the
whole lung is involved. Mortality occurs in a few percent
of patients (108,109).

It has been accepted for some time that the clinical
threshold for single X-ray doses, corrected for tissue
inhomogeneity, is 6-7 Gy (108,111). Such a threshold is
in agreement with predictions from mouse models by
Wara and co-workers (112) that significant clinical com-
plications might be expected for single doses of 7 Gy.
These predictions have recently been strengthened
(109,110,113) and the first attempt has been made to
relate the incidence of pneumonitis to the absolute dose
to the lung in patients receiving large-field radiotherapy
(114). Since the survival time in advanced cancer pa-
tients is similar to the time of onset of pneumonitis,
actuarial corrections have to be made for the early death
of patients. The data given in Figure 5 show the dose
to produce a given actuarial incidence of pneumonitis.
The high incidence (53%) for the dose interval centred
on 8 Gy looks serious when taken on its own but, as the
report notes, when taken with the rest of the data this
incidence is statistically not very significant. The
steeply rising sigmoidal incidence curve shows that for
single fractions the onset of pneumonitis occurs at 7.5
Gy with 5%, 50% and 95% complications occurring at
8.2, 9.3, and 10.6 Gy, respectively. These data are in
agreement with the earlier reported uncorrected dose
incidence data for patients receiving upper half-body
irradiation (110). There are no data for man for the acute
pulmonary effects or lethality from radionuclide expo-
sure.

Current Concepts of the Pathogenesis of
Radiation Pneumonitis

Gross (39) outlines a sequence of steps to explain the
mechanisms underlying radiation pneumonitis. In es-
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FIGURE 5. Best-fit sigmoidal curve of the incidence of radiation

pneumonitis in radiotherapy patients. FromJ. van Dyk et al. (113),
courtesy of the authors and Pergamon Press.

sence, it is suggested that the primary response is an
increase in the microvascular permeability, which
causes an excessive leakage of plasma proteins onto the
alveolar surfaces. This exudate overwhelms the lym-
phatic and other drainage mechanisms and elicits a sec-
ondary response from type II cells. There is type II cell
hyperplasia and an increase in their lamellar bodies,
accompanied by an increase in surfactant production as
the lungs attempt to maintain normal alveolar surface
tension. In the acute phase of pneumonitis, this hom-
eostatic response of the type II cells is ultimately in-
adequate and the loss of surface-tension-lowering-forces
("surfactant deficiency") results in further edema and
atelectasis. These in turn account for the fall in com-
pliance, abnormal gas-exchange values and even res-
piratory failure that presage death.
A number of points can be made about this postulated

mechanism. While early vascular changes have indeed
been reported (8,18,49,59,60), Gross (8) stresses that
capillary permeability and protein leakage in his ex-
periments appears relatively late at 12-16 weeks post-
irradiation. This does not seem consonant with the idea
that the vascular response is the primary response.
Again, as Gross notes (39), there is histological and

biochemical evidence for increased surfactant produc-
tion well before the onset of pneumonitis. This has been
confirmed by recent biochemical studies in mice that
showed a 3- to 4-fold increase in surfactant phospho-
lipids in alveolar fluids within 4-6 weeks of thoracic X-
ray doses of 10-15 Gy (56). This early wave of surfactant
release paralleled a similarly timed wave of excess
serum protein levels in the air-spaces. However, during
the critical pneumonitis phases at 3 to 6 months, there
was no evidence of enhanced surfactant levels to cope
with the 10- to 20-fold increases in serum protein levels,
i.e., during pneumonitis there seems to be no homeo-
static response by type II cells as far as surfactant syn-
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thesis and release is concerned (56). It has been sug-
gested that at this time, radiation-induced type I cell
death might trigger type II cells into division rather
than into surfactant production.
There are data on the efficiency of corticosteroids in

reducing the morbidity and mortality of radiation pneu-
monitis (3,114-116). It appears that such drugs have
little effect on capillary leakage but act by causing a
large increase in surfactant production, sufficient to off-
set the life-threatening mechanical and physiological ef-
fects of excess protein in the air spaces (116). However,
the question as to why type II cells require an exoge-
nous stimulus before they synthesize and release ade-
quate amounts of surfactant remains unanswered.
The hypothesis outlined above seems to fit some

though not all ofthe experimental and clinical literature.
As a result, the pathogenesis of radiation pneumonitis
remains a puzzle of cause and effect.

Late Effects of Radiation in the
Lung
Pulmonary fibrosis and carcinogenesis are the major,

late consequences of radiation, both clinically and ex-
perimentally. While fibrosis may not be completely sep-
arate from early pneumonitis, carcinogenicity can be
regarded as an entirely separate phenomenon, if only
for the considerably lower doses required for its induc-
tion.

Radiation-Induced Pulmonary Fibrosis
Introduction
The acute radiation injury described above is due to

cell death and the depletion of cell populations. If the
attempted regeneration of the parenchyma is inade-
quate, a final phase of pulmonary fibrosis may occur at
periods in excess of 6 months after irradiation. Fibrosis
has been described clinically and experimentally in
many studies after both external and internal radiation.
Acute X-ray doses to produce significant fibrosis in an-
imals and man are generally higher than the LD50/180.
For example, in man, localized doses greater than 20-
30 Gy are needed for significant fibrillar connective tis-
sue deposition although mild focal fibrosis has been re-
ported after : 5 Gy (3).
The term "fibrotic" is a morphological one used to

describe an increase at the light microscope level of
connective tissue fibers in response to some insult (Fig.
6). The pathologist is aided by the characteristic staining
properties of the collagenous components of the fibrous
tissue. Coarse-fibered collagen has affinities for basic
aniline dyes in acid solutions (117), while finer mesh-
works can be identified with the so-called reticulin
stains. It is now becoming clear, however, that the
changes in pulmonary fibrosis are much more complex
than a simple increment in collagen fibers (118), even if
this is described biochemically.

Radiation-induced pulmonary fibrosis should not be
considered in isolation: it is just one example of a het-
erogeneous group of chronic disorders in which there is

fibrosis of the alveolar structures. Recent reviews have
summarized the available information on these condi-
tions (118,119). From the results ofthese studies several
changes can be described, in addition to an increased
prevalence of collagen fibers.
The collagen accumulated during fibrosis may alter

the normal ratio of Type I (coarse fibred) to Type III
(meshwork) collagen. Early studies involving collagen-
typing were beset by problems of extraction of the mac-
romolecules from lung tissue. With relatively low re-
coveries, the collagen types within the extract may not
have been representative of the tissue as a whole. Re-
cent work by Seyer and co-workers (120), using cyano-
gen bromide cleavage of whole lung samples, has dem-
onstrated an increase in the proportion of Type I
collagen in the lungs of patients with idiopathic pul-
monary fibrosis (IPF). However, others have reported
a slight, early increase in Type III collagen in IPF (des-
ignated by them as cryptogenic fibrosing alveolitis-
CFA) (121), and samples of lung from patients with
progressive systemic sclerosis with pulmonary involve-
ment, has unchanged Type I:Type III collagen ratios
(122).
The amounts of elastin and the connective tissue ma-

trix material-glycosaminoglycans-may also change
during fibrosis. Changes in the proportion of the latter
seem to parallel that of collagen, with the increase
equally distributed among all glycosaminoglycan sub-
types (123).

Cellular disturbances play an important role in the
alterations or even destruction of the alveolar architec-
ture. These include cell death on both the endothelial
and epithelial sides of the basement membrane, with
interruptions, layering and thickening of the membrane
itself. In addition, the process always appears to involve
effector cells of the immune system, often as part of
inflammatory and infiltrative phases (124). As a result,
cellular infiltrations of the alveolar spaces, e.g., follow-
ing bleomycin administration (125) or in the adult res-
piratory distress syndrome (ARDS), have been de-
scribed as "fibrosis." However, the connective tissue
changes may be relatively small in comparison with the
cellular ones and therefore these conditions may be
more akin to the pneumonitic phase of radiation damage
than the fibrotic one (38).

Radiation pulmonary fibrosis includes all the facets
described above, although, as will be shown, as a model
of fibrosis it has not been studied in as great detail as,
for example, IPF or silicosis. As described above, it
contains one distinctive feature: within the pneumonitic
phase there is a distinct latent period. It is this phase
that intrigues and baffles researchers, yet may in the
future hold the key to understanding the fibrotic process
in general.
The Clinical Significance of Fibrosis. Several re-

views have been produced on the pulmonary side effects
of radiation therapy, for example: Gross (38), van den
Brenk (14), Phillips and Wyatt (40). By stressing the
severe complications that pneumonitis may produce, au-
thors have placed late radiation fibrosis in perspective.
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FIGURE 6. Radiation-induced fibrotic nodule in mouse lung, 14 months after inhalation of "9Pu02 (silver-reticulin stain).

Although fibrosis is a very common consequence of ther-
apy, the induced clinical symptoms are usually mini-
mal-merely a mild deterioration in pulmonary function
(38).

Biochemical and histological evidence of fibrotic
changes may be present as early as two months after
exposure. The progress of the lesion, as followed by
radiology, is insidious over 1-2 years, by which time a
stable state is reached (38,40). During this period any
pneumonitic changes have been followed by a reparative
phase, with organization of dead cells and inflammatory
exudates. Such changes are often associated with ra-
diological or tomographic evidence of resolution within
the lung (14,126), although the affected areas become
more sharply defined, as permanent fibrosis replaces
the cellular infiltrates. As such, this may be regarded
as the delayed manisfestation of cell death, with sec-
ondary waves of repair, often associated with devas-
cularization of the fibrotic area (14). Phillips and Wyatt
(40) reported fibrotic changes in most patients who had
received a dose that "just suffices to cause radiation
pneumonitis" while Gross (38) described long-term
changes in the majority of patients, whether or not
pneumonitis had preceded them.

It is usually only secondary complications that are of
clinical significance. For example, cystic or bronchiec-
tatic changes sometimes occur in large zones of fibro-
sis-there may be pleural effusion, a spontaneous pneu-

mothorax or even a bronchial obstruction as a result of
the collapse of a tumor site (40). However, the main
effect of the fibrosis is associated with a reduction in
lung volume as the affected region contracts. This may
cause a shift of the mediastinum towards the irradiated
side, with deviation of the trachea (40,126). Deeley (127)
reported evidence of lung shrinkage in all surviving pa-
tients, 15 months after external high-energy X-ray ther-
apy for inoperable bronchogenic carcinoma. Investiga-
tion indicated that there was extensive fibrosis at the
site of the primary lesion, surrounded by macrophage
infiltration and exudation into the alveolar spaces.
Marked movement of the trachea and heart was often
found, helped by compensatory hypertrophy of unaf-
fected regions of the lung. The fibrosed lung was prone
to infection, which could exacerbate cardiac problems
induced by pulmonary vascular deficiency. Indeed, right
heart failure may assume a major complication in such
extreme cases (128). Further progression to "cicatris-
ation" has been described by van den Brenk (14) with
even calcification and ossification becoming evident in
the devascularized regions. However, such changes are
rarely reported in the literature and may represent the
endpoint for highly focal irradiation of parts of the lung
at high dose rates.

Indeed, high dose rate may be a critical factor in the
production of late pulmonary effects (129). For example,
during total body irradiations (TBI), used in recent

271



COGGLE, LAMBERT, AND MOORES

years for the treatment of acute leukemia [see Thomas
et al. (130) for a review of this topic] the whole thorax
is, necessarily, irradiated. However, following doses of
7.5 to 12 Gy at low dose rates, little long-term lung
pathology has been found. On the other hand, upper
half-body irradiations, for the alleviation of widely dis-
seminated malignant disease, while using a similar
range of doses to TBI (6.5-12.5 Gy) have been given at
up to 4 Gy/min. In many cases, radiation pneumonitis
has been a major complication of the treatment (113),
which brings with it the possibility of fibrosis developing
at a later stage.
As the gas-exchange interface is affected by fibrosis,

with thickening of alveolar-capillary barriers and a re-
duction in the effective surface area, so gas transfer is
impaired. However, the first and predominant effect of
fibrosis in man is to produce an abnormally "stiff" lung
(119). Both static and dynamic lung compliance are re-
duced and may be accompanied by a reduction in vital
capacity (127). Because of the increased effort required,
higher breathing rates are adopted with smaller tidal
volumes. As a result, a smaller proportion of inspired
air reaches the alveoli and thus the minute volume may
also be increased. It should be noted however, that
there may be little correlation between lung function
measurements and either histological or biochemical
evidence of fibrosis. Early compliance changes are as-
sociated with edema (131) or surface effects (38), while
only at later times is a "tissue element" involved in the
stiffness (38). In addition, paracicatrical emphysema
may develop around incompliant, fibrotic areas giving
virtually normal physiology, but with gross pathology
(131).
Experimental Studies ofRadiation Fibrosis. Since

both pneumonitis and fibrosis are consequences of ther-
apy regimes, many animal studies have concentrated
on the effects of external irradiation. The health pro-
tection needs of the nuclear power industry have led to
numerous animal studies involving the effects of inter-
nally deposited radionuclides. However, the initial al-
veolar depositions (IADs) required to produce pulmo-
nary fibrosis probably exceed the levels that could be
achieved in any maximum credible accident. Neverthe-
less, they may lead to an understanding of the mechan-
sims of fibrosis.
EXTERNAL IRRADIATION. Using whole-body pleth-

ysmography, Travis and co-workers (132) demonstrated
two phases of reaction following X-irradiation of the
whole thorax of mice, with peaks in breathing rate at
about 16 weeks and 36 weeks, respectively. The first
phase would probably correspond to the acute, inflam-
matory phase of pneumonitis, which had been reported
separately (133). At 36 weeks, in animals surviving the
earlier pneumonitis, the lungs would have shown
greater cellularity, with both pathological organization
and increased amounts of collagen fibers (132).
The increasing evidence to suggest a dissociation be-

tween early pneumonitis and late fibrotic changes in the
lung was noted above. Not only is the histological pic-
ture very different (73,132) but a clear separation has

been found between the lung mortality dose/response
curves using endpoints of 180 and 420 days for pneu-
monitis and fibrosis, respectively (74). Further, Travis
and Down (73) showed that while dose fractionation
spared the pneumonitic phase it did not diminish late,
fibrotic changes. More recent work has shown that one
strain of mice (C57/B1) develop late effects without any
evidence of acute pneumonitis (134,135). In addition, it
has been shown that the radioprotective agent WR2721
is considerably more effective against the later effects
(136).
With whole-thorax irradiation of rats, Kurohara and

Casarett (13) could show pneumonitic changes (desig-
nated "fibrosis" by them) within just 4-5 weeks after
supralethal doses (24 Gy). After moderate doses, how-
ever (6-12 Gy), the lungs appeared similar to controls
for at least 35 weeks. At the other extreme, upper-body
exposure ofdogs to 21 Gy ofX-rays (137) produced many
deaths from "pulmonary fibrosis and alveolar-capillary
block" within a year. The survivors and animals exposed
to 18 Gy produced some fibrosis, with associated em-
physema, but due to the design of the irradiation, also
suffered from thyroid dysfunction.

Biochemical changes in the lungs of animals exposed
to whole-thorax irradiations do not, in general, show
clear demarcations between the two phases of injury.
Indeed, many of the changes described as fibrosis ap-
parently have their origins in the pneumonitic phase.
In mice, lung weight has been shown to increase within
18 weeks of exposure (138), which may be reflected in
collagen content, as determined by hydroxyproline as-
say (139,140). Similar results have been obtained in rats
by Dubrawsky and co-workers (141). When expressed
as concentrations in the lung, hydroxyproline was lin-
early related to dose over the range 7.5 to 15 Gy, but
as lung weight did not always increase, these changes
may have been more complex. In general, it is more
usual to have clear threshold effects for both pneumo-
nitis and fibrosis, at values which are close to the LD50,
180 dose (142).

This effect is demonstrated in Figure 7 from studies
carried out in our own laboratories. Groups of 20 female
SAS/4 mice from a randomly bred colony were exposed
thoracically to X-rays, to give whole thorax doses of 5-
15 Gy. The total collagen content of the lungs was only
elevated significantly after 15 Gy, a dose slightly above
the LD50/180 one of 12 Gy. It is clear that the response
to 5 Gy was negligible, while following 10 Gy the initial
increase in collagen had not become progressive within
the 9-month experimental period.

Studies in animals involving irradiation of the whole
lung are therefore far from straightforward and are by
no means complete. At the moment, two separate
phases can only be described in mice, and even then,
the biochemical data are sparse.
Whole-lung irradiations simulate hemibody and TBI

therapy. Any ensuing fibrosis, which would involve the
whole lung, may be analogous to chronic interstitial fi-
brosis produced by a number of other agents, for ex-
ample asbestos, silica, or paraquat (119). Partial irra-
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FIGURE 7. Total amount of pulmonary collagen, as shown by de-
termination ofhydroxyproline, at various times after whole-thorax
X-irradiation of 6-week-old mice (means ± S.E.M.).

diation of the lung is clinically more common as a
consequence of localized treatment of carcinoma in the
thoracic region. However, both clinical and experimen-
tal evidence indicates that the reaction of the lung is
rather different.

This is well illustrated by the work of Law and co-
workers (143). Mice were given hemithoracic irradia-
tions of 10-40 Gy X-rays. Between 24 and 36 weeks,
after exposures in excess of 20 Gy, the concentration of
hydroxyproline in the irradiated lung increased. This
has been confirmed by several other workers in both
rats and mice, at doses above 10 Gy to one lung
(5,35,37,144,145). However, the data of Law et al. also
imply that the total hydroxyproline of the irradiated
lung actually decreased after exposure above 20 Gy.
After a 10 Gy hemithoracic exposure, the total amount
of collagen in the irradiated lung, as determined by
hydroxyproline, increased gradually with time.
An extreme example of this effect was demonstrated

by Collins et al. (146) following 30-40 Gy60Co gamma-
irradiation of the upper parts of baboon lungs. A "fi-
brotic" condition was described at 6 months after ex-
posure, with increased collagen concentrations in the
affected regions. However, total collagen had, like other
lung components, actually decreased in the irradiated
areas. As collagen was not lost as fast as other com-
ponents, its concentration appeared to increase. As the
irradiated areas shrink with time, this extreme case
may be more of a "radiation stump" than a true fibrosis.
Following highly localized irradiation of rabbit lungs at
high dose rates and doses, calcium deposits and even
new bone formation have been reported (147). In these
circumstances, the shielded regions of the lung may not
only compensate for the functional loss of the irradiated
areas but, as has already been described (40,127), may
physically replace shrunken areas by a compensatory
hypertrophy. As a result, the shielded region is no
longer a valid contralateral control.
The combined effects of decreased function, slight

atrophy, and compensatory hypertrophy of the unaf-
fected regions, therefore produce an effect that is not
completely analogous to other chronic interstitial fi-
broses. However, the long-term pathological descrip-
tion will frequently be of "fibrosis" and be biochemically
indistinguishable from the whole-lung form. Local fi-
brosis, where the insult has been administered to only
one part of the lung, may produce a rather different
final expression of the lesion. Rather than the discrete
foci that distinguish the fibrosis resulting from whole
thorax irradiations, local fibrosis includes a tendency to
atrophy as the unaffected region is able to compensate
for the initial damage. As commented elsewhere, lo-
calized effects in which a "radiation stump" ensues may
be beyond the upper limit of pulmonary fibrosis (119).

Studies on localized radiation fibrosis, while showing
some dissimilarities do, however, indicate many aspects
common to whole-lung exposures. Indeed, the dose-re-
sponse characteristics of changes in breathing rate fol-
lowing hemithoracic or whole-lung irradiation of mice
have been shown to be identical (131). Two phases of
damage have been described histologically (148,149),
and an important, although as yet not fully defined, role
for mast cells in alveolar walls has been described, prior
to the second, fibrotic phase (148,150). The changes in
the alveolar region were mostly epithelial, with less
pronounced effects in the pulmonary vasculature (148).
During both the pneumonitic and fibrotic phases of

localized lung damage, the metabolism of connective
tissue components is grossly disturbed. Using the ex-
tractability of collagen from lung in salt or acid solutions
as a measure of recently synthesized material, Bublitz
(151) reported evidence of increased collagen synthesis
during pneumonitis in the irradiated part of the lung in
rats. This was accompanied by increased concentrations
of glycosaminoglycans within the so-called latent pe-
riod, i.e., by 8 days after exposure. A wave of collagen
synthesis has also been described in the lungs of ham-
ster after fractionated, hemithoracic 60Co gamma irra-
diation (149). An increase in soluble collagen was evi-
dent at 21-22 weeks after exposure, although enhanced
collagen synthesis, as indicated by the incorporation of
tritiated proline, peaked some 6 weeks previously. An
8-week latent period was evident in these experiments,
and, after an inflammatory pneumonitic phase at 14
weeks, fibrosis-as defined both histologically and bio-
chemically-was evident by 36 weeks.

Disturbances of connective tissue metabolism have
also been seen by transitory decreases in pulmonary
hydroxyproline concentration soon after hemithoracic
irradiations (5,144), prior to the later, incrementgl,
phase of fibrosis.
INTERNAL IRRADIATION. The radiological dose to

lung tissue resulting from the inhalation ofradionuclides
is a function of the physical half-life of the isotope and
its residence time in the lung, usually defined by a half-
time of clearance. As a result, the dose is usually pro-
tracted over days or even many years. This complicates
the analysis of the sequence of events, but it does allow
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whole-lung irradiation, without necessarily producing
major problems of early mortality.

Several studies have used virtually insoluble, fused
aluminosilicate particles (FAP) to carry low LET, beta-
emitting radionuclides to the parenchymal regions of
the lung. In this way, relatively uniform, highly pro-
tracted irradiation of the lung can be achieved. Using
short-lived 9Y, research at the Inhalation Toxicology
Research Institute (ITRI) in Albuquerque demon-
strated a typical pneumonitic phase in beagle dogs (150)
and lung function changes typical of pneumonitis and
fibrosis (153,154). These workers emphasized that fi-
brinolysis was an integral part of the inflammatory
phase, linking this work to the X-ray studies of Gerber
and co-workers, who have also demonstrated the sig-
nificance of biogenic amines in the maintenance of in-
flammation (144).
The most significant aspects of the connective tissue

studies of the ITRI group are their extensive studies
of collagen metabolism. They demonstrated an early
increase in ultraffilterable hydroxyproline in the lungs
of exposed animals (155). This occurred during an early
period of low static compliance in the lung, when pneu-
monitis was prevalent. It has been interpreted as an
increase in collagen degradation, preceding the syn-
thetic phase that produced more soluble collagen
(149,155) and increased incorporation of labeled proline
as hydroxyproline (156). Later studies showed that, at
the high accumulated doses required to produce fibrosis,
the initial dose rate was critical (107,154,157), as sum-
marized recently by Pickrell (119).
The effects of alpha-emitting radionuclides have been

studied extensively in laboratory animals. As potential
risks in the nuclear power industry, insoluble alpha-
emitting particles have come under close scrutiny as the
dose delivered by them to the surrounding tissue is
extremely inhomogeneous. This has implications for
dose calculations and commitments, especially related
to neoplastic changes.
The early studies of Battelle-Northwest Laboratories

and others have been summarized by Bair (158), allow-
ing broad guidelines to be established. At initial con-
centrations of alpha-emitting plutonium in the lung in
excess of 20 MBq/kg (0.5 puCi/g), death due to pneu-
monitis occurs relatively quickly (57,106). Below about
2 MBq/kg, the animals' survival time is only marginally
affected, and long-term neoplasia may be induced. Be-
tween these two extremes, plutonium-induced fibrosis
will be induced, its time of onset being dependent on
the initial concentration of the actinide. These can, how-
ever, be only taken as the crudest guides, as isotope
and chemical form affect clearance rates. As a result,
both dose-rate and total accumulated dose to the lung
would be affected.
The connective tissue studies of the ITRI group in

hamsters (154,159) are at the lowest end of this range
(2.5 to 5 MBq/kg). Their results are summarized in Fig-
ure 8, for an IAD of 4 kBq of 238-plutonium dioxide
(8PuO2). The dose from the insoluble 28PuO2 particles
would have been delivered relatively slowly-about 0.2
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FIGURE 8. Pulmonary collagen metabolism in hamsters as a function
of days after exposure to 3.7 kBq3PuO2* Fraction proline incor-
poration indicates (0,0) relative synthetic rate; (O,-) ultrafil-
terable hydroxyproline, collagen breakdown; and (A,A) quantity,
collagen accumulation or scarring. From Pickrell et al., (159), cour-
tesy the authors and the Lovelace Foundation.

Gy per day-decreasing over the course of the exper-
iment. The sequence of connective tissue changes was
protracted producing the most clearly demarcated bio-
chemical phases of all the radionuclides studied (154).
They began with increased collagen breakdown, asso-
ciated with a neutrophil infiltration, preceding both syn-
thesis and the resulting increment in total quantity. The
accumulation ofcollagen was greatest at about 130 days,
when parenchymal scarring was evident. Although col-
lagen synthesis returned to more normal levels by 290
days, these scars, with their concomitant collagen, re-
mained in the lung producing pulmonary failure. The
distribution ofthe scars has been shown to be dependent
on foci of 238PuO2 particles, around which the collagen
is accumulated (160).
Some studies with 239-plutonium, which has a lower

specific activity (longer half-life) than the 238-isotope,
have used IADs high enough to promote an early pneu-
monitic response, with either insoluble "9PuO2 in ham-
sters (161) or a variety of more soluble forns, in rats
or rabbits (162-168). Such studies have described some
of the cellular changes during both pneumonitis and
fibrosis (161,162) and have shown that the metabolism
of collagen (160,164-166), glycosaminoglycans (163,165)
and lipids (162,166) are all shifted towards enhanced
synthesis. Within the glycosaminoglyeans, radiation fi-
brosis alone (123) appears to selectively involve certain
sub-types including chondroitin and heparin sulfates
after both internal (163) and external (169) irradiation.
A rather different sequence of events has been de-

scribed by Metivier and co-workers (170-172) after in-
halation exposure of rats to high IADs of ?-"PU02 (5-6
MBq/kg). They reported a biphasic response, with an
initial peak of fibrosis, as seen both by histology and
analytical biochemistry, at about 230 days, a partial
return to the biochemical values of controls at 400 days
and signs of a secondary wave of fibrosis at 500 days.
The recovery phase at 400 days was not reflected in
histological improvement and was not apparent in ani-
mals dying over the same period (170). It would, there-
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RADIATION EFFECTS IN THE LUNG

fore, appear that a "survivors" effect may have been
responsible for much of the apparent recovery (173),
especially as later studies compared groups with dis-
similar IADs at different times, so that they would have
accumulated similar total doses (171). The system has
also been used to demonstrate metabolic changes by
"biochemical dissection" (differential extraction), which
imply a major role for catabolism in the control of col-
lagen concentration in the lung (172). These studies
were also characterized by a biphasic response.
However, in subsequent studies with mice in our own

laboratories, no real indication of a recovery phase could
be demonstrated (174). As is shown in Figure 9 the lungs
of mice were analyzed at varous intervals after expo-
sure to sized 239PuO2 particles, to give IADs of 6, 42,
and 925 Bq (equivalent to 0.04, 0.3, and 6.2 MBq/kg,
respectively). Figure 9 shows the collagen response, in
terms of hydroxyproline content, relative to the lungs
of simultaneous control animals. Only the highest IAD
produced significant changes, with a 40% increase in
lung collagen at 3 months, with only slight changes over
the next 9 months. Thereafter, a second phase was ev-
ident, which was associated with the accumulation of
fibrotic nodules and associated cell infiltrations. The re-
sponse up to 9 months was reminiscent of the process
described for hamsters after 21PuO2 exposure (154),
with an additional secondary phase missing from those
shorter studies, but demonstrable in rats at 500 days
(170).

So, a pattern of radiation fibrosis is emerging, con-
sisting of an initial increase in collagen degradation,
followed by a much larger increase in collagen accu-
mulation. Whether there is a causal link between the
two and the actual site of the degradation, still has to
be determined. In the same way, although collagen
builds up during fibrosis, the mechanism-whether by
enhanced synthesis or reduced degradation-has still
to be elucidated. Although enhanced incorporation of
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FIGURE 9. Total amount of pulmonary collagen, as shown by de-
terimination of hydroxyproline, at various times after inhalation
exposure to 3PU02 of 6-week old male and female SAS/4 mice to
give three initial alveolar depositions (174).

radiolabeled proline into hydroxyproline has been re-
ported frequently, the techniques used would not have
compensated for any changes in the metabolic pool size
in the fibrotic lung, a feature common to more recent
methods (175). The type of collagen accumulated in ra-
diation fibrosis is also unknown. Other fibrosis studies,
using elegant techniques, have found little change in
collagen type during chemical-induced fibrosis
(176,177). It is possible that it is the inappropriateness
of the site of the new collagen that is wrong.

In summary, while attention to breathing rates and
disputes over collagen metabolism have concerned ra-
diobiologists in this field for several years, the patho-
genesis of radiation fibrosis remains virtually unknown.
Classical theories of fibrosis that involve macrophage
recruitment and damage (178) seem inappropriate
when, as has been shown above, macrophage numbers
may be severely depleted (11,179), especially during the
chronic damage induced by inhaled 39PUO2 (180). In-
deed, the chronic nature of this damage may be the key
element, in the same way that chronic inflammation is
a major feature of mineral dust-induced fibrosis (124).
The maintenance ofinflammation is an important side-

effect of fibrinolysis during pneumonitis (144,152) and
some form of prolonged inflammation has been recorded
as part of almost every acute response to radiation by
the lung. Even following the low dose-rates of 239PuO2
to the lung, when little edema or leukocyte infiltration
can be seen (170,174), the macrophage depletion itself
may be a manifestation of chronic damage by phago-
cytosed alpha-emitting particles.

Speculation over the sequence of events in radiation
pneumonitis and fibrosis may seem premature, but if it
is made in the context of fibrosis in general, it may be
valuable. In attempting such a synthesis of ideas, Pick-
erell (181) has highlighted the integrity of the basement
lamina as crucial in delineating reparable from disrup-
tive and ultimately, scar-producing lesions. The expo-
sure of basement lamina can occur in many ways, in-
cluding, of course, by both endothelial and epithelial
damage. With protracted radiation, the chronic stimu-
lus producing denudation and lysis is obvious. In con-
trast, in fibrosis after external exposure at high dose
rate, a chronic component appears to be absent: fibrosis
develops only after a characteristic latent period. How-
ever, such delayed "avalanche" expressions of radiation
damage are consistent with recent theories of cell ki-
netics in which, for example, the lung would appear to
be closest to the F (flexible) type, in which all cells have
the potential for proliferation (182). As a consequence,
the more severe damage of large doses is seen before
that produced by smaller doses. There is, however, a
limit to the minimum time before manifestation of lung
damage (142), when perhaps a critical proportion of es-
sential cells (for example, Type II pneumonocytes) have
ceased to function (183). Such hypotheses have been
constructed primarily to explain the pathogenesis of
pneumonitis, but they are also compatible with late fi-
brosis. For example, in the fibrosis induced in dogs by
inhalation of beta-emitting particles, the animals died
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with exactly the same fibrotic lesion, but at different
times after exposure (157). A "preclinical" stage of de-
velopment was advocated, with variable length, fol-
lowed by the development of the lesion over a fixed time
sequence. On an individual basis, this is equivalent to
the latency exhibited by, for example, X-irradiated pop-
ulations of mice but without the uniform time to ap-
pearance of the lesions that characterize high "instan-
taneous" doses.

Radiation-Induced Pulmonary Cancer
Human Data. Of the neoplasms induced by radia-

tion, lung cancer was the earliest to be recognized, and
it is one of the most important because of the very high
mortality associated with the disease. In man, several
populations have been studied intensively, including the
Japanese survivors of the U.S. atomic bombs, patients
irradiated for either ankylosing spondylitis or tuber-
culosis and various groups of uranium and other hard
rock miners (184,185). The miners received their irra-
diation primarily from the inhalation of airborne alpha-
radiation, while the other groups have been exposed to
external radiation.

Radioactivity in mines is due to the diffusion of radon
and thorium gases, derived from uranium-238 and thor-
ium-232 in igneous rocks. Obviously the greatest levels
and therefore hazard are found in uranium mines, but
significant concentrations do occur in other types of
mine. Radon-222 diffuses from the rocks and soils into
the air and rapidly decays (half-life 3.8 days) to give
radon daughters, two of which are isotopes of polonium.
When these airborne decay products are first formed
they are single ionized atoms, but they quickly attach
to dust and water vapor to produce respirable aerosols.
These are of such a size (-0.4 ,um AMAD) that they
can penetrate to the bronchi and beyond to be retained
in the lungs. * High radon concentration was suggested
many years ago as the cause of excess lung carcinoma
in Schneeberg metal miners and Joachimstal uranium
miners (186,187). More recently, a correlation between
exposure and increased frequency of small-cell anaplas-
tic cancers, together with excess numbers ofepidermoid
cancers and adenocarcinomas, has been reported for
U.S. miners (188). There was no excess in these miners
of large cell undifferentiated cancers and bronchoalveo-
lar tumors. Horecek et al. (189) analyzed the histological
types of bronchial cancers in Czechoslovakian uranium
miners and confirmed the data on excess of epidermoid
and small-cell undifferentiated cancers (188). Excess
small-cell tumors have also been reported for South Af-
rican uranium miners (190). There are minor epide-
miological surveys from Canadian uranium and fluor-
spar miners (191,192), Swedish metal miners (193), and
United Kingdom hematite miners, all of which support

*AMAD is the activity median aerodynamic diameter, that is, the
median diameter, as a function of radioactivity, of a unit density
sphere that would have the same terminal velocity due to gravity as
the particles under consideration.

the relationship between excess mortality from lung
cancer and internal radiation exposure (194).

It is difficult to separate the relative contribution of
cigarette smoking and radon exposure in miners, be-
cause there are generally too few nonsmoking miners
to make a control group. The UNSCEAR report of 1977
(184) stated that the data do not allow one to say cat-
egorically whether smoking has a cocarcinogenic, mul-
tiplicative effect or an additive effect. The 1980 BEIR
III report (185) said that a multiplicative effect of smok-
ing is highly unlikely. Nevertheless, there is some evi-
dence for a cocarcinogenic effect between smoking and
radiation with lung cancer rates up to ten times greater
in smoking miners than nonsmoking miners (195). Fur-
ther, it has been shown that induction-latent period for
cancer in nonsmoking miners is longer than in miners
who smoke 20 or more cigarettes per day (196).
Much effort has gone into evaluating the environment

ofuranium miners. Miners are exposed to external beta-
and gamma-irradiation, to airborne radon daughters
and to rock dust. The inadequate, infrequent or absent
air sampling of some mines, especially prior to 1950,
makes estimates of the cumulative doses only very ap-
proximate. However, compared with today, the dose
rate under the early mining conditions was on average
at least 10 working levels, i.e., 10 times the limiting
dose rate in current practice (194).* Today, most coun-
tries accept the WL limit and try to ensure that no
worker is exposed to more than 2WLM in a consecutive
3 month period and no more than 4 WLM in any con-
secutive 12 month period. Modern mining conditions
involve frequent air sampling, personal protective
equipment and high ventilation rates. In addition, care
can be taken in the separation of the radon ventilation
system and radon-containing water, from main airduct
and water supplies. All of these measures efficiently
reduce the radon hazard.
The relationship between the WLM and the dose to

the lung is complex, but it is generally agreed that 1
WLM delivers - 1 cGy of alpha radiation to the bronchial
epithelium, the main target tissue (184). Using WL lim-
its, several studies have shown that the relationship
between the alpha dose and the excess mortality from
lung cancer is consistent with a linear regression
through zero (184,185). If it is assumed that 1 cGy of
alpha radiation is equivalent to 5-10 cGy of low LET
X- or gamma rays, then the risk of fatal lung cancer
from exposure to low LET radiation would be between
20-150 cases per 106 persons exposed to 1 cGy (184).
This estimate is in relatively good agreement with the
values of 20 fatal cancers per 106 per cGy from Hiro-
shima and between 10 and 25 fatal cancer per 106 per
cGy from Nagasaki (184). These risk estimates assume
a linear dose-response relationship at least for high LET
alpha radiation. The 1980 BEIR report (185) said that

*A working level is defined as any combination of short-lived radon
daughter products in one litre of air that will result in the emission
of 1.3 x 105 MeV of potential alpha energy. Working level month
(WLM) is the exposure to one working level for 170 hr.
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not only is the newer information on lung cancer rates
consistent with this assumption, but also the lowest dose
at which lung cancer is increased has been lowered.
However, the risk estimates for lung cancer given in
that report are somewhat confusing and are not in
agreement with those in UNSCEAR 1977 (184). They
have been severely criticized as gross overestimates
(197). It is suggested that the BEIR estimates are prob-
ably too high by a factor of 2-5 for miners. Because of
different smoking habits, the risk to the public may be
another factor of two lower.
The human evidence for the induction of lung tumors

following external radiation comes from a number of
sources. They include not only the victims of the atomic
bombs (184), but also the mortality statistics of British
radiologists (198) and the mortality of patients treated
for ankylosing spondilitis (199).

In the next two sections we shall concentrate on the
experimental studies that are most relevant to the hu-
man lung cancer data just described. The discussion is
divided into experiments involving external irradiation
and those involving irradiation from internal emitters.
Experimental Studies with External Irradia-

tion. Most human lung cancer arises in the upper part
of the bronchial tree, while most experimental animal
tumors arise in the bronchioalveolar region. This fact
is often used to question the relevance of animal models.
On the positive side, there are numerous experimental
studies that have helped to advance our understanding
of the human lung cancer data. The following lists some
recent advances and is taken from the 1980 BEIR Com-
mittee Report (185).

Respiratory tract tumors develop in animals exposed
to radiation at sites where the local irradiation exposure
is greatest. Bronchial and nasal sinus tumors have been
produced in animals exposed to radon and its daughters.
The effects of cigarette smoke on the development of
bronchial cancers in radon experiments remain equiv-
ocal. The sensitivity of the respiratory tract of animals
to cancer induction by radiation may be increased by
irritant or other proliferative stimuli given after the
radiation exposure. The bronchial tissue in the lungs is
itself a separate compartment whose uptake and release
of inhaled materials may play an important role in dis-
eases such as bronchogenic carcinoma arising in the
bronchial epithelium.
Most of the external irradiation experiments used

mice and have been designed to study the details of
dose-response relationship and to explore fundamental
radiobiological mechanisms. A distinction needs to be
made between experiments involving whole-body ir-
radiation and those using localized thoracic exposure.
Many of the early experiments were broad-based and

designed to study radiation lifeshortening and a wide
range of somatic effects of uniform whole-body irradia-
tion. Interpretation of the results is complicated by var-
iations in the age at death, so that actuarial adjustments
have to be made of intercurrent mortality. With such
corrections, the results are still not in agreement: the
majority of studies reporting a decreased incidence,

some an increase and some no change in the incidence
of lung tumors after radiation.
Thus two early studies both reported increased in-

cidences of lung tumors in mice after whole-body irra-
diation (200,201), while an experiment to study the rel-
ative effects of X-rays and neutrons found lower
incidences of tumors after both types of radiation (202).
In this study, the control mice had a 24% incidence,
whereas 8 Gy X-rays produced an 8% incidence and 2.9-
5.8 Gy, 8 MeV neutrons produced a lung tumor inci-
dence of 9% (200).

In LAF1 mice exposed to whole-body gamma-rays
from the explosion of an atomic device, the pulmonary
adenomas appeared late in life. The incidence markedly
declined with dose, when the figures were corrected for
intercurrent mortality (203), although the induction-la-
tent period was reduced by the radiation. Another study
of LAF1 mice also found a decreasing incidence of lung
tumors after gamma doses up to 7 Gy (204). The slope
was steeper in male than female mice, but overall, the
males had five times the incidence of lung tumors than
female mice. In another mouse strain, SAS/4, a decline
in pulmonary tumors was reported over the dose range
0.5-4.75 Gy for mice irradiated with 14 MeV electrons,
when correction was made for intercurrent mortality
(205). In female RF mice, "no real increase" in lung
tumor incidence was reported after 5-6 Gy X-rays, but
there was some acceleration in the appearance oftumors
(206). A decreasing incidence of tumors was produced
after both 5 MeV and 14 MeV neutrons in female RFM/
Un mice (207,208). In male RF mice, there were no
differences between the effects of X-rays and neutrons
both showing a decline with increasing dose (208). Pro-
tons also produced a decreasing lung tumor incidence
with dose in RF mice (209). In a comparison of acute
gamma irradiation with acute and protracted neutron
irradiations, it was found that gamma-rays decreased
the lung tumor incidence up to 1.5 Gy, but there was a
slight increase at 3 Gy (210). Acute and protracted neu-
tron exposures in these studies gave the same peaked
response, with increased tumor incidences at doses as
low as 0.2 Gy and a maximum incidence at 1 Gy (210).

It is obvious that no general conclusion can be drawn
from this scatter of data. No single systematic study
stands out and the inadequacy of these whole-body life-
span studies is related to (a) the death of animals prior
to detection of lung tumors, (b) to difficulties of de-
tecting tumors in animals after death, and (c) to the
complications involved in the various age-adjustment
procedures used to correct for mortality rates in dif-
ferent radiation groups.
Such considerations and criticisms led several groups

to use localized thoracic irradiation. Once again, how-
ever, most of the experiments are too small and unsys-
tematic to yield valuable data, although the overall re-
sults are more consistent than for whole-body
exposures. Both rats and hamsters given fractionated
thoracic doses of 35 and 40 Gy, respectively, developed
sufficiently more squamous cell carcinomas compared
with the zero incidence in control animals (211,212).
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Single thoracic doses of 30 and 40 Gy in the same studies
induced significant increases in lung tumors (211,212).
A much quoted study reported in 1973 showed a very
complete dose-response curve for lung adenomas in-
duced in RFM mice 11 months after thoracic X-irradia-
tion with doses between 7 and 30 Gy (213). The incidence
peaked at 15 Gy, when 75% of mice had pulmonary
nodules. Thereafter, the incidence then declined, reach-
ing control levels at 27.5 Gy. The mean number of ad-
enomas per mouse also showed a markedly peaked re-
sponse, which closely paralleled the peaked incidence-
response curve (213). The decreased incidence was not
attributable to the reduced survival of the mice, since
no excess mortality compared with controls was ob-
served, even after a thoracic dose of 30 Gy. A recent
paper from the same laboratory, using the same RFM
mouse strain, stated that thoracic X-ray doses above 9
Gy could not be used because of animal lethality from
lung damage within 180 days of exposure (214). The
reasons for the differences between the experiments are
not known.

Figure 10 shows some recent interesting dose-re-
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FIGURE 10. Relationship between lung tumors per mouse in female
RFM mice, 9 months after localized thoracic exposure to X-rays
(upper panel) and fission neutrons (lower panel). From R. L. Ull-
rich et al. (215), courtesy of the authors and Academic Press.

sponse data on adenoma induction in RFM mice, after
thoracic X-rays and neutron exposure (215). The use of
the parameter, tumor mouse, is based on the premise
that the observed tumors are randomly distributed and
that no sensitive or resistant subpopulations exist (216).
Although these response relationships are probably the
best available, they are nevertheless inadequate to de-
fine the precise shape of the dose-response curve for
either radiation. The data are adequate to exclude both
a linear dose response for X-rays and a square-root-of-
the-dose relationship after neutron exposure. They
strongly suggest a linear dose-squared relationship
after X-irradiation and a linear response after neutron
exposure. Such findings reinforce certain fundamental
radiobiological theories of the interaction of radiation
with matter and show that the relative biological effec-
tiveness of neutrons increases with decreasing neutron
dose (217).

Nevertheless, even these data are ultimately limited
because they involve a single sacrifice time and it will
be necessary to do lifespan studies to resolve the basic
questions as to whether the radiation truly induced tu-
mors or merely accelerated their natural appearance.

Studies into the influence of dose rate (214) and of
dose fractionation (216) reported that fewer lung tumors
were induced by gamma-irradiation given at a low dose-
rate (0.083 Gy per day) compared with a high one (0.45
Gy per minute). Although such studies are inherently
difficult to interpret, these lung cancer data seem di-
rectly attributable to the differences in dose rate.
The fundamental radiobiological differences between

the tumor dose response curves for X-rays and neutrons
(see Fig. 10) were reinforced in split-dose studies (216).
Thus after X-irradiation, recovery was observed using
a 24 hr fractionation interval only when the total dose
was on the dose-squared region of the single dose-re-
sponse curve, i.e., above 4 Gy in Figure 10. In contrast,
no recovery was observed using split doses of neutrons
whatever the dose or whether the time interval between
doses was 24 hr or 30 days. As Ullrich noted (216), these
data imply that the primary mechanism of radiation
carcinogenesis involves intracellular lesions and intra-
cellular repair. It has nothing to do with intercellular
interactions or repopulation phenomena.
Experimental Studies with Internal Irradiation
INTRODUCTION. The inhalation of radioactive mater-

ial is a potentially important source of irradiation for
radiation workers, especially those in the nuclear power
industry. In power stations, the hazard is mainly from
beta/gamma particles arising from the activation and
corrosion of structural materials (218), whereas ura-
nium and plutonium are more significant in the fabri-
cation and reprocessing of reactor fuels.

Ideally our estimates of the hazard from radioactive
particles should be based on human experience but, al-
though follow-up studies are being carried out on men
who have inhaled particulate plutonium, development
of cancer as a result of exposure to actinides has not
yet been documented. However, data on carcinogenesis
from uranium miners who inhaled radon and its daugh-
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ters have been reported in detail. Unfortunately, there
is a considerable difference between the dose pattern
produced by radon daughters and that produced by
other radioactive particles that could lodge in the lung
and give very high local doses. It is also proving difficult
to determine the precise doses the miners received and
to what extent their lung tumors were due to radiation
alone. In the absence of direct human experience, we
must turn to animals to improve our assessment of the
lung cancer hazard from radioactive materials.

Neoplasia in the lung as a direct consequence of in-
halation or instillation of radioactive materials is easily
demonstrated in animals. It is often claimed that the
most commonly used animals-rodents-are poor
models for man, because both their spontaneous and
radiation-induced tumors normally occur in the alveolar
region, i.e., where the radiation dose is highest. In man,
lung tumors tend to be of small-cell origin and located
in the bronchiolar regions. The study of such neoplasia
in animals and its extrapolation to man is also compli-
cated by a number of other factors, not the least ofwhich
are the size of the inhaled particles, their chemical and
physical form, the type of radioactive emission, the
physical half-life of the material, and its biological half-
life in the lung. Also, for most radioisotopes emitting
alpha or beta particles, the dose delivered to the lung
will be far from uniform. In addition, the inevitably
protracted nature of the dose often makes comparisons
with external X- or gamma-ray exposures inappropriate
and even misleading. In terms of dose-effect relation-
ships, because such parameters as deposition and the
movement of particles are often unknown, it is difficult
to establish a clear relationship between the physical
features of contamination and the biological assessment
of neoplasia. For instance, according to the character-
istics of the deposit, the number of cells at risk varies.
This underlines the difficulty in extrapolating from one
species to another and of making direct comparisons
between animals of different sizes. Nevertheless, in the
absence of any evidence on the location of radiation-
induced lung tumors in man, models based on data from
rodents or dogs should be of relevance.
A useful discussion of the role of animal experiments

is given in the UNSCEAR (1972) report on the effects
of ionizing radiation (219). This concluded that there are
two applications of general acceptability: (a) to help
clarify the mechanisms of carcinogenesis and (b) to es-
tablish generalizations about the effects ofradiation that
apply to all species.
Experimental data are grouped here, and reviewed,

according to the type of radioactive materials involved.
The classification is one of relative "solubility," used in
the sense of "transportable" within the body.
"SOLUBLE" ALPHA-EMITTERS. Lung cancer has

been observed in several animal species after inhalation,
or intratracheal injection, of relatively soluble (easily
translocated) alpha-emitting radionuclides. Yuile and
co-workers (220) observed adenocarcinomas and squa-
mous cell carcinomas in equal numbers in rats after
inhalation of 210Po with a sodium chloride carrier. Dep-

osition in the lungs giving doses in the range 0.71-5.83
Gy (after 280 days) resulted in cancer incidences of 4-
13%. In Syrian golden hamsters given 15 weekly intra-
tracheal injections of polonium absorbed on ferric oxide
carrier particles, the incidence of bronchogenic carci-
noma after 1 year was 91% at 45 Gy, and 43% at 2.25
Gy (221,222). In another experiment comparing the ef-
fects of 210Po absorbed on Fe2O3 and 210po in saline, the
authors concluded that a more uniformly distributed
dose produced a higher cancer incidence (223). A com-
parison between lung cancers induced by 210Po and by
benzo(a)pyrene (224) emphasized the fact that the ra-
dioactive material induced peripherally sited cancers
almost exclusively, whereas benzo(a.)pyrene most fre-
quently induced epidermoid carcinoma of the trachea or
major bronchi.
Many lung tumors have been observed with higher

actinides such as americium, curium, and einsteinium
in the 3+ valence state. For example, both inhaled
241Am nitrate and the relatively soluble oxide caused
an increased incidence of lung carcinoma in rats (225-
227). Both forms of americium resulted in a lung tumor
incidence increasing with dose, as long as the rats' life-
spans permitted cancer development, but the oxide
seemed more likely to produce lung cancers than the
nitrate. However, many other factors could have had
an influence, e.g., rat strain and the appearance ofmany
sarcomas in the americium oxide-exposed rats, giving
a higher incidence than if only carcinomas had been
recorded. As was observed with polonium and
benzo(a)pyrene (224), the addition of another carcino-
gen, in this case, tobacco smoke, resulted in a 2- to 4-
fold increase in cancer incidence.
Thorium administered by inhalation as 227Th(N03)4

has been shown to give comparable results to inhalation
of americium (53), whereas the incidence of lung tumors
after inhalation of244Cm nitrate was not so high as might
have been predicted. As curium considerably reduced
the life span, it is possible that the full cancer potential
was not expressed. Einsteinium has also been shown to
induce lung cancers in rats after intratracheal instilla-
tion (66,228). Because of its relatively short half-life, it
was necessary to inject high activities, which may have
reduced the observed numbers of lung cancers. Com-
pared with other transuranics, both curium and ein-
steinium cause high incidences of extrapulmonary tu-
mors (226,228).

Various soluble forms ofplutonium-239 have also been
shown to increase lung tumor incidence, e.g., 39Pu ci-
trate and ammonium 39Pu pentacarbonate inhaled by
rats and rabbits (229), intratracheal injection and in-
halation of 239Pu nitrate and intratracheally injected
39-plutyl acetate in rats (230). In addition, high inci-
dences of lung tumors have been reported following
inhalation of 8Pu nitrate by rats (231).

In summary, relatively soluble alpha-emitters at
IADs of greater than 0.04 MBq/kg have an increasing
probability of causing lung cancer. However, the pro-
duction of low tumor incidences at high doses reflects
the shortened life spans due to deaths from causes other
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than neoplasia. Below 0.04 MBq/kg no experiments
have shown statistically significant increases in the lung
tumor incidence. Several studies have provided evi-
dence of a synergistic effect between alpha-radiation
and tobacco smoke or benzo(ot)pyrene.
"INSOLUBLE" ALPHA-EMITTERS. One of the first

studies providing evidence that high insoluble alpha-
emitting particles deposited in the lungs could cause
cancer was that of Temple, Marks, and Bair (232,233)
using intratracheal instillation of about 0.37 MBq/kg of
9PuO2 into mice. In subsequent experiments, the ex-

posure, this time by inhalation, was reduced to an IAD
of 0.19 MBq/kg, but no cancer was induced (234). More
recent studies with '9PuO2 have been undertaken using
hamsters and dogs. For example, whereas very little
neoplasia was recorded in hamsters with IADs greater
than 5.6 MBq/kg (235) in an experiment with dogs, 91%
of the animals had tumors even at IADs of 0.26 MBq/
kg (236). In this latter study, all the tumor-bearing an-
imals had bronchioalveolar carcinomas with metastases
to many other organs.

'PuO2 has also been used in a number of studies.
Neoplasia was found in rats after inhalation of 2"PuO2
at IADs down to 0.14 MBq/kg lung (237), but no lung
tumors were found in hamsters at IADs up to 20.4 MBq/
kg lung (238). Several dog experiments are in progress,
with neoplasia recorded at levels of about 1.1 MBq/kg
lung, after inhalation of 'PuO2 (239,240).
One of the most comprehensive neoplasia studies was

the work reported by Sanders and co-workers (241,242),
using high-fired 21PuO2 and 239PuO2 inhaled by rats.
Oxides of plutonium exhibit varying degrees of solubil-
ity in the lung depending on their physicochemical form,
but the particular method of preparation of the oxides
in these experiments resulted in inhaled particles which,
although differing considerably in specific activity, were
not significantly different in in vivo solubility. The lung
burdens chosen enabled complete dose-response curves
to be obtained with peak incidences of lung tumors at
about 20 Gy for "9Pu and 100 Gy for 23pPu, but with
some increase detectable below 0.10 Gy (see Fig. 11).
They also found significant relative differences in the
types of tumors induced by the two isotopes: that is,
many more adenocarcinomas were induced at low ra-
diation doses after 239PuO2 exposure than after "8PuO2.
Attempts have also been made to investigate the ef-

fects of highly localized plutonium in the lung. The plu-
tonium has been introduced as 238PuO injected through
the thoracic wall (243) in rats, or as 238Pu microspheres
by intubation, surgery or intravenous injection into the
lungs of dogs (236,243), rats (244), and hamsters (246).
All these experiments were largely unsuccessful in pro-
ducing lung neoplasia.
The results from beagle dog experiments could be

more relevant for extrapolation to man, although only
the high dose groups are really complete; that is, doses
in the range 10-120 Gy. These correspond to survival
times between 2.5 and 11 years giving high incidences
of tumors (82%) after '9PuO2 (236). In a group of eight
dogs receiving 0.26 MBq/kg, with an average life span

of 8 years, the incidence was 87.5%. However, the small
numbers involved and the apparent saturation of effect
does not allow any insight into the dose-effect relation-
ship. All pulmonary cancers observed in the beagles
were adenocarcinomas although metastasis was fre-
quent. There are also results from 238Pu but again too
few (two groups of ten dogs) to be of immediate use
(239).
A few experiments have been started with primates

(247-249) but, although the tumors induced have been
similar to those occurring in man, insufficient numbers
of animals have been used to make meaningful deduc-
tions.
Recent experiments (250) using a wide dose range,

have involved the single inhalation exposure of mice to
aerosols of sized 239PuO2. Peak lung cancer incidence
was 85% compared with a control value of 31%, follow-
ing an initial lung deposition 92.5 Bq (0.6 MBq/kg). More
significantly, a peak incidence of 52% was found com-
pared with 10.5% in controls in mice killed 1 year after
the same IAD. This would have been equivalent to a
mean lung dose of 2.6 Gy (see Fig. 12).
There have also been a number of studies where re-

peated inhalation exposure of 239PuO2 was used (251-
253). These studies were prompted by the need to more
closely match the expected intake in man. Lundgren's
work with hamsters, which involved seven bimonthly
exposures to 169Yb-labeled 239PuO2 particles (252), only
produced one tumor. This emphasizes the low sensitiv-
ity of this species to the induction of lung neoplasia.
However, from these data it was concluded that the
incidence of lung tumors appeared to depend only on
the cumulative radiation dose to the lung rather than
the dose-rate; an observation confirmed recently in rats
(253). This is in contrast to earlier work with mice, when
protraction of the alpha dose by re-exposure caused a
threefold increase in lung adenomas compared with a
single exposure to the same lung burden (251).

In summary, it can be seen that relatively insoluble
alpha-emitters produced neoplasia in the lungs at IADs
above 0.04 MBq/kg in rats, mice, and dogs, with peak
incidences in the range 0.6-3.7 MBq/kg. This range
would be equivalent to mean lung doses of 2.5-12 Gy.
Hamsters seem comparatively insensitive to the induc-
tion of lung tumors by all forms of alpha-emitters (254-
256).
RADON AND RADON DAUGHTERS. Radon and its de-

cay products present special problems in inhalation tox-
icology because, as discussed above, long-term effects
have been recorded following human exposure in ura-
nium mines (257-260). Experiments involving animal
exposures have been used to develop a better basis for
setting exposure standards. In particular, they have
been used to determine whether other factors, such as
cigarette smoke and ore dust, act synergistically with
radiation in inducing neoplasia.
Pulmonary cancers have been observed in beagle dogs

and hamsters that have inhaled radon decay products
and ore dust (261-263), and in rats (264) inhaling radon.
In this latter experiment exposures were protracted
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and effects were related to working level months
(WLM). The highest incidences of tumors (72 and 60%)
were produced by exposures of 4500 and 9000 WLM
respectively, delivered over 300-500 hr during a 3-4
month period (264). Over 14,000 WLM, the animals died
of fibrosis before tumors could develop. Uranium dust
seemed to have no effect on the incidence of tumors,
which were about halfbronchogenic carcinomas and half
bronchioalveolar carcinomas. It appeared that a rela-
tively high exposure, given over a few months early in

life, was more likely to cause cancer than a protracted
exposure throughout life. This was supported by Stuart
and co-workers (262,263) in experiments with rodents
and dogs chronically exposed to radon and uranium
dust. Again, the tumors found in both rats and dogs
were dissimilar to the oat-cell carcinoma commonly
found in miners. In rats, the tumors were squamous
carcinomas and adenocarcinomas, while in dogs, they
were epidermoid and bronchioalveolar carcinomas, even
though the local deposition in the lung was similar in
each species. In these experiments, cigarette smoking
did not appear to increase the frequency of cancers, but
did promote other respiratory tract lesions, including
pleural thickening, alveolar septal fibrosis, vesicular
emphysema and chronic bronchitis. This action ofsmoke
was again found in a recent comprehensive series of
experiments by Cross and co-workers (265), involving
beagle dogs inhaling radon daughters, uranium ore
dust, and cigarette smoke. However, the carcinomas,
which were of the epidermoid and bronchioalveolar
type, appeared only in animals that had cumulative ra-
don daughter exposure exceeding 13,000 WLM. This is
nearly two orders of magnitude higher than that re-
ported to cause lung cancer in man (258). Strangely,
the tumor-bearing animals also survived longer than
nontumor animals.
From all the data on the effects of radon, ore dust,

and smoke (266-270) it is evident that although local
conditions in miner's respiratory tracts can be simulated
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in animals, the effects have been different with the re-
sults applicable in only a general manner, i.e., in terms
of modeling. Nevertheless, there is evidence at least in
rats that the carcinogenic actions of alpha radiation and
either tobacco smoke or benzo(a)pyrene are synergistic,
but are highly dependent on the mode of administration
of the cocarcinogen.
BETA/GAMMA-EMITTING SOURCES. In attempts to

produce intense local fields of radiation in the lung, sev-
eral experiments have reported the use of 90Sr (271,272)
or '"Ru (273-275) in the form of labeled thoracically
implanted spheres or rods. In the study of Cember and
Watson (271), 7 out of 23 rats died of lung tumors with
doses of 0.5-2.6 x 103 Gy from 'Sr-labeled glass beads
in the lung. In all these experiments, considerable
trauma was associated with the implantation of the
source and even with 106Ru no tumors were seen below
3.2 x 103 Gy, making comparisons with inhaled mate-
rials difficult. Nevertheless, this procedure was utilized
in one study, in which 'Co was used to examine inter-
species differences in lung tumor incidences-lowest
incidence was in hamsters (8%) and the highest in rats
(75%) (276).

Intratracheal instillation allows a fairly accurate as-
sessment to be made of the amount of material given
to the animals, but produces more trauma and a more
uneven distribution of the material than inhalation
(277). Rats have been used almost exclusively for these
experiments, for example, using Ba35SO4 (271,278),
144CeF3 (279,280) and 1 CeC13 (281). The lung tumors
seen have been squamous cell carcinomas or broncho-
genic ones with little apparent dependence on the ini-
tiating isotope, but with lung burdens about three or-
ders of magnitude higher than for alpha-emitting
materials.
Most experiments with beta-emitters have involved

the inhalation of various compounds of 144Ce, either in
rats (282,283) or mice (284). These experiments have
involved few animals and produced few tumors, espe-
cially in mice. There have also been a number of dog
experiments using 9Y, 91Y, 144Ce, or 'Sr in fused alu-
minosilicate particles (285). The responses in these stud-
ies were enough to allow comparison with the inhalation
of 239PuO2 by dogs (236). Hemangiosarcomas were in-
duced in animals that had been exposed to 144Ce and
'Sr but were not found following 9Y, 91y or 239PuO2
exposures. 239PuO2 experiments were characterized by
the predominance of bronchioalveolar carcinomas.
THE "HOT PARTICLE" THEORY. Little is known

about the movement of individual particles in the lung
of man, but insoluble material may be retained within
the pulmonary region for hundreds of days. Even in the
tracheobronchial region, from which most material is
very rapidly cleared, there is evidence that some par-
ticles are not moved for hours or days (286,287). In the
case of particles emitting radiation of a limited range,
it is therefore possible that very high doses may be
received by the small volumes of tissue surrounding
such particles, whilst most of the organ remains vir-
tually unirradiated. This would suggest that the effects

of such inhomogeneous radiation would not relate to the
"averaged" dose over the whole lung. There has been
considerable controversy in the literature about the
magnitude of long-term risks associated with exposures
of this type (288). This "hot particle" problem is an
extreme example of the more general problems of as-
sessing the consequences of nonuniform irradiation. It
is not a new concept and the International Commission
on Radiological Protection (ICRP) considered it in 1969
(289). The current dose limits are based on the as-
sumption that using mean organ dose will not under-
estimate the risks, although the limitations are appre-
ciated.
Most data indicate that homogeneous dose distribu-

tions are more effective, although Sanders, Thompson,
and Bair (290) in reviewing the available evidence from
animal experiments concluded that nonuniform internal
irradiation of the lung was more carcinogenic than uni-
form exposure for the same amount of absorbed energy.
The suggestions by Tamplin and Cochran in 1974 (288)
that the risks from "hot particles" may be several orders
ofmagnitude higher than would be expected on the basis
of mean organ dose, came not from direct observation
but were the predictions of hypotheses concerning the
mechanisms of radiation carcinogenesis (291,292).
Geesaman (291) suggested that there were small crit-

ical volumes of tissue which, if given a dose sufficient
to disrupt them had a probability of producing a tumor
of the order of 10-3 to 10-4. This hypothesis was based
on the results of an experiment in which rat skin was
irradiated (293) and which showed an apparent corre-
lation between the number of atrophied hair follicles
and the number oftumors produced. Dean and Langham
(292) proposed a model, which assumed that tumors
arose from a single irradiated cell. They obtained a cel-
lular dose-response relationship from the result of an
experiment in which rat skin was uniformly irradiated
(294), by assuming that a single layer of cells-the basal
layer-was at risk. By applying this dose-response re-
lationship to all cells in the lung they found a very high
probability of tumor induction from a single radioactive
particle.
Both models assumed that all lung tissue was as ra-

diosensitive as certain structures within the skin, which
were taken to be unusually susceptible to tumor induc-
tion. This hypothesis was vigorously supported by Tam-
plin and Cochran (288), but equally vigorously criticized
by others (295-298). Most of these criticisms were as
theoretical as the original hypothesis, but there have
since been a number of experiments which are perti-
nent. For example, Anderson and co-workers (246), us-
ing plutonium-containing particles deposited in the pul-
monary capillaries ofhamsters, showed no enhancement
effect of particulate compared with more uniformly dis-
tributed plutonium. This work, although producing few
tumors, has been extended to other species with the
same result (299-302). In these experiments no pul-
monary neoplasia was recorded until more than 36% of
the lung was irradiated with a large dose rate (130 Gy/
yr) and then with only 10% incidence. It is possible that
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this lack of neoplastic effect is related to the lack of
movement of the irradiating particles, which lodged in
the pulmonary capillaries. If this were the case, the
number of irradiated cells becomes an important factor
in the carcinogenic effects. Experiments involving in-
halation of finely crushed 238PU02 (237,303), which de-
livers a particularly uniform dose to the lung, also sup-
port the theory of increased effect for more uniform
irradiation. In more recent studies in our own labora-
tories (250), long-term effects were recorded in mice
that had inhaled aerosols of sized "9PuO2. The aerosols
had AMADs of 0.8 ,um, 1.5 ,um, and 2.2 ,um. In this
way, different dose distributions in the lung would be
produced, as different numbers of particles were inhaled
for the same IAD. Some of these mice were killed at
one year and others left for their lifespan. In both
groups, the maximum incidence of lung tumors occurred
following the most uniform distribution of dose, i.e.,
after inhalation of the smallest size particles. This pro-
vides sound experimental evidence that uniform irra-
diation of the lung is more hazardous for long-term ef-
fects than a highly nonuniform dose distribution.
CONCLUSION. Evidence from animal experiments on

radiation-induced lung cancer has been reviewed at var-
ious times over the last 20 years or so (53,290,304-306).
Other reviews (158,297) have concentrated on compar-
ing the toxicity of alpha radiation from insoluble plu-
tonium particles with that from uniformly distributed
alpha activity in the lung.
From the reviewed data certain general conclusions

may be made. The speed of development of tumors, i.e.,
the latent period, appears to be proportional to the dose,
although a series of well-defined morphological changes
always occur even in control animals. If the lifespan of
rats with pulmonary cancer is taken into consideration,
a clear difference of about a factor of three in terms of
risk is apparent, between animals exposed to relatively
transportable elements such as 241Am and nontrans-
portable materials such as 239Pu oxide. These differ-
ences are most marked at low doses but interpretations
are complicated by factors connected with experimental
design.
There is now a body of animal evidence that suggests

that the carcinogenic action of alpha radiation and other
agents such as tobacco smoke and benzo(a)pyrene in
the lung may be more than additive. However, these
effects seem highly species-specific and dependent on
the mode of administration of the two agents.

In rodents, radiation-induced cancers can be divided
into three types according to the cells in which the tu-
mors originate: bronchioalveolar carcinomas (type II,
pneumonocytes); bronchogenic carcinomas (epider-
moid); and sarcomas.
Sarcomas represent only about 2% of cancers, the

remainder being equally bronchioalveolar and broncho-
genic carcinomas (225). At low doses, bronchioalveolar
cancers predominate, while at high doses it is broncho-
genic cancers that assume this role. This may reflect
the different speeds of development of the two types of
tumor. A similar distribution oftumor type is also found

after inhalation of radon and its daughters whose mode
of deposition is quite different. This illustrates the im-
portance of cell-type sensitivity rather than the region
where most damage occurs.
The combined dog, rat, and mouse survival data more

closely correlate with average dose per day than with
total dose, suggesting that repair mechanisms enhance
survival at lower dose rates.
The peripheral areas of the lung, which seem to con-

centrate inhaled 239Pu02, are the sites where "9Pu02-
induced tumors occur in rats and mice. Thus, it might
be concluded that peripheral tumors would be the type
induced by plutonium in man, in contrast to the more
central or hilar location of cancer in cigarette smokers
(307). Peripheral lung tumors are also the most common
spontaneous type occurring in dogs (308,309), in which
the radiation exposure may be merely increasing their
incidence. It has also been suggested that peripheral
tumors could be the type most prevalent in man if tu-
mors resulting from smoking-related causes were re-
moved from consideration (310).
Even with this evidence, the critical steps in the de-

velopment of radioactive particle-induced lung tumors
remain unknown. After inhalation, particles are phag-
ocytosed by alveolar macrophages, and there are the-
ories that neoplasia is a consequence of cell death, tissue
necrosis and fibrosis (311). This mechanism is supported
by the incidence of fibrosis-linked tumors in man (312).

In summary, it is clear that although animal experi-
ments have provided a mass of data, the elucidation of
the mechanism of lung carcinogenesis is far from com-
plete. This is partly because of the complexicity of the
subject and partly because ofthe often overriding desire
to simulate practical conditions. However, certain ob-
jectives have been reached: it can be seen that, in terms
of carcinogenic risk, alpha-emitting material is at least
an order of magnitude more hazardous than that emit-
ting beta/gamma radiation. Also there is considerable
evidence that a more homogeneous irradiation of the
lung produces more tumors than "hot spot" dose pat-
terns. Finally, it is still unfortunately the case that we
do not yet know which species can provide the best
model for extrapolation to man.
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